van Santvoort Mike, Eduati Federica
Department of Mathematics and Computer Science, Eindhoven University of Technology, Groene Loper 3, 5612AE Eindhoven, The Netherlands.
Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612AE Eindhoven, The Netherlands.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf236.
The advent of technologies to measure molecule information from a tissue that retains spatial information paved the way for the development of cell-cell interaction (CCI) methods. Even though these spatial technologies are still in their relative infancy, the developed methods promise more accurate analysis of CCIs due to the inclusion of spatial data. In this review, we outline these methods and provide a high-level view of the algorithms they employ. Moreover, we investigate how they deal with the spatial nature of the data they use and what types of downstream analyses they execute. We show that spatial CCI methods can broadly be classified into supervised learning, statistical correlation, and optimization methods that are used for either refinement of CCI networks, spatial clustering, differential expression analysis, or analysis of signal propagation through a tissue. In the end, we highlight some avenues for the development of complementary CCI methods that exploit advances in spatial data or alleviate certain downsides of the current methods.
能够从保留空间信息的组织中测量分子信息的技术的出现,为细胞-细胞相互作用(CCI)方法的发展铺平了道路。尽管这些空间技术仍处于相对起步阶段,但由于纳入了空间数据,已开发的方法有望对细胞-细胞相互作用进行更准确的分析。在本综述中,我们概述了这些方法,并对它们所采用的算法进行了高层次的介绍。此外,我们研究了它们如何处理所使用数据的空间性质,以及它们执行何种类型的下游分析。我们表明,空间细胞-细胞相互作用方法大致可分为监督学习、统计相关性和优化方法,这些方法用于细胞-细胞相互作用网络的细化、空间聚类、差异表达分析或通过组织的信号传播分析。最后,我们强调了一些互补性细胞-细胞相互作用方法的发展途径,这些方法利用空间数据的进展或缓解当前方法的某些缺点。