Suppr超能文献

通过探索与确认分析工作流程(ECAW)减少二次数据分析中的偏差:对观察性研究人员的一项提议与调查

Reducing bias in secondary data analysis via an Explore and Confirm Analysis Workflow (ECAW): a proposal and survey of observational researchers.

作者信息

Thibault Robert T, Kovacs Marton, Hardwicke Tom E, Sarafoglou Alexandra, Ioannidis John P A, Munafò Marcus R

机构信息

Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA 94305-6104, USA.

School of Psychological Science, University of Bristol, Bristol, UK.

出版信息

R Soc Open Sci. 2023 Oct 11;10(10):230568. doi: 10.1098/rsos.230568. eCollection 2023 Oct.

Abstract

Although preregistration can reduce researcher bias and increase transparency in primary research settings, it is less applicable to secondary data analysis. An alternative method that affords additional protection from researcher bias, which cannot be gained from conventional forms of preregistration alone, is an Explore and Confirm Analysis Workflow (ECAW). In this workflow, a data management organization initially provides access to only a subset of their dataset to researchers who request it. The researchers then prepare an analysis script based on the subset of data, upload the analysis script to a registry, and then receive access to the full dataset. ECAWs aim to achieve similar goals to preregistration, but make access to the full dataset contingent on compliance. The present survey aimed to garner information from the research community where ECAWs could be applied-employing the Avon Longitudinal Study of Parents and Children (ALSPAC) as a case example. We emailed a Web-based survey to researchers who had previously applied for access to ALSPAC's transgenerational observational dataset. We received 103 responses, for a 9% response rate. The results suggest that-at least among our sample of respondents-ECAWs hold the potential to serve their intended purpose and appear relatively acceptable. For example, only 10% of respondents disagreed that ALSPAC should run a study on ECAWs (versus 55% who agreed). However, as many as 26% of respondents agreed that they would be less willing to use ALSPAC data if they were required to use an ECAW (versus 45% who disagreed). Our data and findings provide information for organizations and individuals interested in implementing ECAWs and related interventions. . https://osf.io/g2fw5 Deviations from the preregistration are outlined in electronic supplementary material A.

摘要

尽管预注册可以减少研究者偏差并提高原始研究环境的透明度,但它在二次数据分析中的适用性较低。一种能够提供额外保护以防止研究者偏差的替代方法是探索与确认分析工作流程(ECAW),这是传统预注册形式所无法单独实现的。在这个工作流程中,数据管理机构最初仅向请求访问其数据集的研究人员提供数据集的一个子集。然后,研究人员根据该数据子集编写一个分析脚本,将分析脚本上传到一个注册库,之后才能获得完整数据集的访问权限。ECAW的目标与预注册相似,但完整数据集的访问取决于是否合规。本调查旨在从研究群体中收集有关ECAW适用情况的信息——以阿冯亲子纵向研究(ALSPAC)为例。我们通过电子邮件向之前申请访问ALSPAC跨代观测数据集的研究人员发送了一份基于网络的调查问卷。我们收到了103份回复,回复率为9%。结果表明,至少在我们的受访者样本中,ECAW有潜力实现其预期目的,并且看起来相对可以接受。例如,只有10%的受访者不同意ALSPAC开展关于ECAW的研究(相比之下,55%的受访者表示同意)。然而,多达26%的受访者表示,如果要求他们使用ECAW,他们使用ALSPAC数据的意愿会降低(相比之下,45%的受访者表示不同意)。我们的数据和研究结果为有兴趣实施ECAW及相关干预措施的组织和个人提供了信息。. https://osf.io/g2fw5 预注册的偏差在电子补充材料A中列出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54a/10565389/ae2d96728d80/rsos230568f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验