Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 United States of America.
Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America.
Phys Med Biol. 2023 May 11;68(10). doi: 10.1088/1361-6560/accf5e.
Accurate and efficient delineation of the clinical target volume (CTV) is of utmost significance in post-operative breast cancer radiotherapy. However, CTV delineation is challenging as the exact extent of microscopic disease encompassed by CTV is not visualizable in radiological images and remains uncertain. We proposed to mimic physicians' contouring practice for CTV segmentation in stereotactic partial breast irradiation (S-PBI) where CTV is derived from tumor bed volume (TBV) via a margin expansion followed by correcting the extensions for anatomical barriers of tumor invasion (e.g. skin, chest wall). We proposed a deep-learning model, where CT images and the corresponding TBV masks formed a multi-channel input for a 3D U-Net based architecture. The design guided the model to encode the location-related image features and directed the network to focus on TBV to initiate CTV segmentation. Gradient weighted class activation map (Grad-CAM) visualizations of the model predictions revealed that the extension rules and geometric/anatomical boundaries were learnt during model training to assist the network to limit the expansion to a certain distance from the chest wall and the skin. We retrospectively collected 175 prone CT images from 35 post-operative breast cancer patients who received 5-fraction partial breast irradiation regimen on GammaPod. The 35 patients were randomly split into training (25), validation (5) and test (5) sets. Our model achieved mean (standard deviation) of 0.94 (±0.02), 2.46 (±0.5) mm, and 0.53 (±0.14) mm for Dice similarity coefficient, 95th percentile Hausdorff distance, and average symmetric surface distance respectively on the test set. The results are promising for improving the efficiency and accuracy of CTV delineation during on-line treatment planning procedure.
准确高效地勾画临床靶区(CTV)对于乳腺癌术后放疗至关重要。然而,由于CTV 所包含的微观疾病范围在放射学图像中不可见,且其范围尚不确定,因此 CTV 的勾画具有挑战性。我们提出在立体定向部分乳腺照射(S-PBI)中模拟医生的 CTV 勾画实践,CTV 是通过在肿瘤床体积(TBV)上进行边界扩展得到的,然后对肿瘤侵袭的解剖学边界(如皮肤、胸壁)进行扩展修正。我们提出了一种基于深度学习的模型,该模型将 CT 图像及其对应的 TBV 掩模组合成一个多通道输入,输入到基于 3D U-Net 的架构中。该设计指导模型编码与位置相关的图像特征,并引导网络专注于 TBV 以启动 CTV 分割。模型预测的梯度加权类激活图(Grad-CAM)可视化结果表明,在模型训练过程中学习了扩展规则和几何/解剖边界,以帮助网络将扩展限制在距胸壁和皮肤一定距离内。我们回顾性地收集了 35 名接受 GammaPod 5 分次部分乳腺照射治疗的乳腺癌术后患者的 175 个俯卧位 CT 图像。35 名患者被随机分为训练集(25 名)、验证集(5 名)和测试集(5 名)。我们的模型在测试集上的 Dice 相似系数、95 百分位 Hausdorff 距离和平均对称面距离的平均值(标准差)分别为 0.94(±0.02)、2.46(±0.5)mm 和 0.53(±0.14)mm。这些结果有望提高在线治疗计划过程中 CTV 勾画的效率和准确性。