Suppr超能文献

基于数据驱动的全RNA表达基因鉴定,用于评估脑组织中突出显示的异质细胞类型中的RNA丰度。

Data-driven identification of total RNA expression genes for estimation of RNA abundance in heterogeneous cell types highlighted in brain tissue.

作者信息

Huuki-Myers Louise A, Montgomery Kelsey D, Kwon Sang Ho, Page Stephanie C, Hicks Stephanie C, Maynard Kristen R, Collado-Torres Leonardo

机构信息

Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.

The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.

出版信息

Genome Biol. 2023 Oct 16;24(1):233. doi: 10.1186/s13059-023-03066-w.

Abstract

We define and identify a new class of control genes for next-generation sequencing called total RNA expression genes (TREGs), which correlate with total RNA abundance in cell types of different sizes and transcriptional activity. We provide a data-driven method to identify TREGs from single-cell RNA sequencing data, allowing the estimation of total amount of RNA when restricted to quantifying a limited number of genes. We demonstrate our method in postmortem human brain using multiplex single-molecule fluorescent in situ hybridization and compare candidate TREGs against classic housekeeping genes. We identify AKT3 as a top TREG across five brain regions.

摘要

我们定义并鉴定了一类用于下一代测序的新型控制基因,称为总RNA表达基因(TREGs),它们与不同大小细胞类型中的总RNA丰度以及转录活性相关。我们提供了一种数据驱动的方法,可从单细胞RNA测序数据中鉴定TREGs,从而在限于定量有限数量基因时能够估计RNA的总量。我们使用多重单分子荧光原位杂交在人类死后大脑中展示了我们的方法,并将候选TREGs与经典管家基因进行了比较。我们确定AKT3是五个脑区中排名靠前的TREG。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e619/10578035/5f0ce96016e3/13059_2023_3066_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验