Kuemmerle Louis B, Luecken Malte D, Firsova Alexandra B, Barros de Andrade E Sousa Lisa, Straßer Lena, Mekki Ilhem Isra, Campi Francesco, Heumos Lukas, Shulman Maiia, Beliaeva Valentina, Hediyeh-Zadeh Soroor, Schaar Anna C, Mahbubani Krishnaa T, Sountoulidis Alexandros, Balassa Tamás, Kovacs Ferenc, Horvath Peter, Piraud Marie, Ertürk Ali, Samakovlis Christos, Theis Fabian J
Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany.
Nat Methods. 2024 Dec;21(12):2260-2270. doi: 10.1038/s41592-024-02496-z. Epub 2024 Nov 18.
Targeted spatial transcriptomic methods capture the topology of cell types and states in tissues at single-cell and subcellular resolution by measuring the expression of a predefined set of genes. The selection of an optimal set of probed genes is crucial for capturing the spatial signals present in a tissue. This requires selecting the most informative, yet minimal, set of genes to profile (gene set selection) for which it is possible to build probes (probe design). However, current selections often rely on marker genes, precluding them from detecting continuous spatial signals or new states. We present Spapros, an end-to-end probe set selection pipeline that optimizes both gene set specificity for cell type identification and within-cell type expression variation to resolve spatially distinct populations while considering prior knowledge as well as probe design and expression constraints. We evaluated Spapros and show that it outperforms other selection approaches in both cell type recovery and recovering expression variation beyond cell types. Furthermore, we used Spapros to design a single-cell resolution in situ hybridization on tissues (SCRINSHOT) experiment of adult lung tissue to demonstrate how probes selected with Spapros identify cell types of interest and detect spatial variation even within cell types.
靶向空间转录组学方法通过测量一组预定义基因的表达,以单细胞和亚细胞分辨率捕获组织中细胞类型和状态的拓扑结构。选择一组最佳的探测基因对于捕获组织中存在的空间信号至关重要。这需要选择信息量最大但数量最少的一组基因进行分析(基因集选择),以便能够构建探针(探针设计)。然而,目前的选择通常依赖于标记基因,这使得它们无法检测连续的空间信号或新的状态。我们提出了Spapros,这是一种端到端的探针集选择流程,它在考虑先验知识以及探针设计和表达限制的同时,优化了用于细胞类型识别的基因集特异性和细胞类型内的表达变异,以解析空间上不同的群体。我们对Spapros进行了评估,结果表明它在细胞类型恢复和恢复细胞类型之外的表达变异方面均优于其他选择方法。此外,我们使用Spapros设计了一项针对成年肺组织的单细胞分辨率原位杂交(SCRINSHOT)实验,以展示用Spapros选择的探针如何识别感兴趣的细胞类型并检测即使在细胞类型内的空间变异。