Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
College of Dentistry, The Arab Academy for Science and Technology and Maritime Transport (AASTMT), El-Alamein, Egypt.
Clin Oral Investig. 2023 Nov;27(11):6789-6799. doi: 10.1007/s00784-023-05291-w. Epub 2023 Oct 17.
Dental implants are currently becoming a routine treatment decision in dentistry. Synthetic polyetheretherketone (PEEK) polymer is a prevalent component of dental implantology field. The current study aimed to assess the influence of Nd:YAG laser nano-topographical surface engineering combined with ultraviolet light or platelet rich fibrin on the bioactivity and osseointegration of PEEK implants in laboratory and animal testing model.
Computer Aided Design-Computer Aided Manufacturing (CAD CAM) discs of PEEK were used to fabricate PEEK discs (8 mm × 3 mm) N = 36 and implant cylinders (3 mm × 6 mm) N = 72. Specimens were exposed to Nd:YAG laser at wavelength 1064 nm, and surface roughness topography/Ra parameter was recorded in nanometer using atomic force microscopy. Laser modified specimens were divided into three groups: Nd:YAG laser engineered surfaces (control), Nd:YAG laser/UV engineered surfaces and Nd:YAG laser/PRF engineered surfaces (N = 12 discs-N = 24 implants). In vitro bioactivity test was performed, and precipitated apatite minerals were assessed with X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). In vivo histomorphometric analysis was performed in rabbits with BIC% calculation.
Ra mean value of PEEK laser engineered surfaces was 125.179 nm. For the studied groups, XRD patterns revealed distinctive peaks of different apatite minerals that were demonstrated by SEM as dispersed surface aggregations. There was a significant increase in the BIC% from control group 56.43 (0.97) to laser/UV surfaces 77.30 (0.78) to laser/PRF 84.80 (1.29) (< 0.0001).
Successful engineered nano-topographical biomimetic PEEK implant could be achieved by Nd:YAG laser technique associated with improving bioactivity. The combination with UV or PRF could be simple and economic methods to gain more significant improvement of PEEK implant surface bioactivity with superior osteointegration.
种植牙目前已成为牙科治疗的常规决策。合成聚醚醚酮(PEEK)聚合物是种植牙领域的常见成分。本研究旨在评估钕:钇铝石榴石(Nd:YAG)激光纳米形貌表面工程与紫外光或富含血小板纤维蛋白联合应用对 PEEK 种植体在实验室和动物模型中的生物活性和骨整合的影响。
使用计算机辅助设计-计算机辅助制造(CAD CAM)制作 PEEK 圆盘,制造 PEEK 圆盘(8mm×3mm)N=36 个和种植体圆柱(3mm×6mm)N=72 个。将标本暴露于波长为 1064nm 的 Nd:YAG 激光下,使用原子力显微镜记录纳米级表面粗糙度参数 Ra。将激光改性标本分为三组:Nd:YAG 激光处理表面(对照组)、Nd:YAG 激光/UV 处理表面和 Nd:YAG 激光/富含血小板纤维蛋白(PRF)处理表面(N=12 个圆盘-N=24 个种植体)。进行体外生物活性测试,通过 X 射线衍射分析(XRD)和扫描电子显微镜(SEM)评估沉淀的磷灰石矿物质。在兔体内进行组织形态计量学分析,并计算骨整合率(BIC%)。
PEEK 激光处理表面的 Ra 平均值为 125.179nm。对于研究组,XRD 图谱显示不同磷灰石矿物质的特征峰,SEM 显示为分散的表面聚集物。与对照组 56.43(0.97)相比,激光/UV 表面 77.30(0.78)和激光/PRF 表面 84.80(1.29)的 BIC%显著增加(<0.0001)。
通过 Nd:YAG 激光技术可以成功制造具有纳米形貌仿生特性的 PEEK 种植体,提高生物活性。与紫外光或富含血小板纤维蛋白联合使用可能是一种简单且经济的方法,可以显著提高 PEEK 种植体表面的生物活性,促进更好的骨整合。