Suppr超能文献

正常压力脑积水的自动分割与连通性分析

Automated Segmentation and Connectivity Analysis for Normal Pressure Hydrocephalus.

作者信息

Zhang Angela, Khan Amil, Majeti Saisidharth, Pham Judy, Nguyen Christopher, Tran Peter, Iyer Vikram, Shelat Ashutosh, Chen Jefferson, Manjunath B S

机构信息

Vision Research Laboratory, Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.

Chen Lab, Department of Neurosurgery, University of California, Irvine Medical Center, Orange, CA, USA.

出版信息

BME Front. 2022 Jan 9;2022:9783128. doi: 10.34133/2022/9783128. eCollection 2022.

Abstract

. We propose an automated method of predicting Normal Pressure Hydrocephalus (NPH) from CT scans. A deep convolutional network segments regions of interest from the scans. These regions are then combined with MRI information to predict NPH. To our knowledge, this is the first method which automatically predicts NPH from CT scans and incorporates diffusion tractography information for prediction. . Due to their low cost and high versatility, CT scans are often used in NPH diagnosis. No well-defined and effective protocol currently exists for analysis of CT scans for NPH. Evans' index, an approximation of the ventricle to brain volume using one 2D image slice, has been proposed but is not robust. The proposed approach is an effective way to quantify regions of interest and offers a computational method for predicting NPH. . We propose a novel method to predict NPH by combining regions of interest segmented from CT scans with connectome data to compute features which capture the impact of enlarged ventricles by excluding fiber tracts passing through these regions. The segmentation and network features are used to train a model for NPH prediction. . Our method outperforms the current state-of-the-art by 9 precision points and 29 recall points. Our segmentation model outperforms the current state-of-the-art in segmenting the ventricle, gray-white matter, and subarachnoid space in CT scans. . Our experimental results demonstrate that fast and accurate volumetric segmentation of CT brain scans can help improve the NPH diagnosis process, and network properties can increase NPH prediction accuracy.

摘要

我们提出了一种从CT扫描中预测正常压力脑积水(NPH)的自动化方法。一个深度卷积网络从扫描图像中分割出感兴趣区域。然后将这些区域与MRI信息相结合来预测NPH。据我们所知,这是第一种从CT扫描中自动预测NPH并将扩散张量成像信息纳入预测的方法。

由于CT扫描成本低且通用性强,常用于NPH诊断。目前尚无用于分析NPH的CT扫描的明确有效方案。Evans指数是使用一个二维图像切片对脑室与脑体积的近似值,已被提出但并不稳健。所提出的方法是量化感兴趣区域的有效途径,并提供了一种预测NPH的计算方法。

我们提出了一种新颖的方法来预测NPH,即通过将从CT扫描中分割出的感兴趣区域与连接组数据相结合,计算特征,通过排除穿过这些区域的纤维束来捕捉扩大脑室的影响。分割和网络特征用于训练NPH预测模型。

我们的方法在精度上比当前的最先进方法高出9个点,召回率高出29个点。我们的分割模型在CT扫描中分割脑室、灰白质和蛛网膜下腔方面优于当前的最先进方法。

我们的实验结果表明,快速准确的CT脑扫描体积分割有助于改善NPH诊断过程,网络特性可提高NPH预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b799/10521674/d0185e58198f/9783128.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验