Suppr超能文献

使用深度卷积网络进行心室分割的缺点

Shortcomings of Ventricle Segmentation Using Deep Convolutional Networks.

作者信息

Shao Muhan, Han Shuo, Carass Aaron, Li Xiang, Blitz Ari M, Prince Jerry L, Ellingsen Lotta M

机构信息

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.

Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Underst Interpret Mach Learn Med Image Comput Appl (2018). 2018 Sep;11038:79-86. doi: 10.1007/978-3-030-02628-8_9. Epub 2018 Oct 24.

Abstract

Normal Pressure Hydrocephalus (NPH) is a brain disorder that can present with ventriculomegaly and dementia-like symptoms, which often can be reversed through surgery. Having accurate segmentation of the ventricular system into its sub-compartments from magnetic resonance images (MRI) would be beneficial to better characterize the condition of NPH patients. Previous segmentation algorithms need long processing time and often fail to accurately segment severely enlarged ventricles in NPH patients. Recently, deep convolutional neural network (CNN) methods have been reported to have fast and accurate performance on medical image segmentation tasks. In this paper, we present a 3D U-net CNN-based network to segment the ventricular system in MRI. We trained three networks on different data sets and compared their performances. The networks trained on healthy controls (HC) failed in patients with NPH pathology, even in patients with normal appearing ventricles. The network trained on images from HC and NPH patients provided superior performance against state-of-the-art methods when evaluated on images from both data sets.

摘要

正常压力脑积水(NPH)是一种脑部疾病,可表现为脑室扩大和类似痴呆的症状,通常可通过手术逆转。从磁共振图像(MRI)中将脑室系统准确分割成其子区域,将有助于更好地描述NPH患者的病情。先前的分割算法需要很长的处理时间,并且常常无法准确分割NPH患者严重扩大的脑室。最近,有报道称深度卷积神经网络(CNN)方法在医学图像分割任务中具有快速且准确的性能。在本文中,我们提出了一种基于3D U-net CNN的网络来分割MRI中的脑室系统。我们在不同的数据集上训练了三个网络,并比较了它们的性能。在健康对照(HC)上训练的网络在患有NPH病理的患者中失败了,即使在脑室外观正常的患者中也是如此。当在来自两个数据集的图像上进行评估时,在来自HC和NPH患者的图像上训练的网络相对于现有方法提供了卓越的性能。

相似文献

1
Shortcomings of Ventricle Segmentation Using Deep Convolutional Networks.使用深度卷积网络进行心室分割的缺点
Underst Interpret Mach Learn Med Image Comput Appl (2018). 2018 Sep;11038:79-86. doi: 10.1007/978-3-030-02628-8_9. Epub 2018 Oct 24.
4
Whole Brain Parcellation with Pathology: Validation on Ventriculomegaly Patients.基于病理学的全脑分区:在脑室扩大患者中的验证
Patch Based Tech Med Imaging (2017). 2017 Sep;10530:20-28. doi: 10.1007/978-3-319-67434-6_3. Epub 2017 Aug 31.

引用本文的文献

本文引用的文献

1
Whole Brain Parcellation with Pathology: Validation on Ventriculomegaly Patients.基于病理学的全脑分区:在脑室扩大患者中的验证
Patch Based Tech Med Imaging (2017). 2017 Sep;10530:20-28. doi: 10.1007/978-3-319-67434-6_3. Epub 2017 Aug 31.
5
Robust whole-brain segmentation: application to traumatic brain injury.稳健的全脑分割:在创伤性脑损伤中的应用。
Med Image Anal. 2015 Apr;21(1):40-58. doi: 10.1016/j.media.2014.12.003. Epub 2014 Dec 24.
6
Multi-Atlas Segmentation with Joint Label Fusion.基于联合标签融合的多图谱分割
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.
7
FreeSurfer.FreeSurfer。
Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.
8
N4ITK: improved N3 bias correction.N4ITK:改进的 N3 偏置校正。
IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20. doi: 10.1109/TMI.2010.2046908. Epub 2010 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验