Suppr超能文献

通过对人体测量学和生理表型进行随机森林分析改进对游泳天赋的预测。

Improved prediction of swimming talent through random forest analysis of anthropometric and physiological phenotypes.

作者信息

Liu Cheng, Xu Bingxiang, Wan Kang, Sun Qin, Wang Ruwen, Feng Yue, Shao Hui, Liu Tiemin, Wang Ru

机构信息

School of Kinesiology, Shanghai University of Sport, Qingyuanhuan Road, #650, Yangpu District, Shanghai, 200438 China.

Faculty of Physical Culture and Sports, Ryazan State University, Ryazan, 390000 Russia.

出版信息

Phenomics. 2024 Nov 20;4(5):465-472. doi: 10.1007/s43657-024-00176-8. eCollection 2024 Oct.

Abstract

UNLABELLED

The field of competitive swimming lacks broadly applicable predictive models for talent identification across various age groups of adolescent swimmers. This study aimed to construct a predictive model for athletic talent using machine learning methods based on anthropometric and physiological data. Baseline data were collected from 5444 participants aged 10-18 in Shanghai, China, between 2015 and 2018, with 4969 completing a 3-year follow-up. Talents were discerned based on their performance over the follow-up period, revealing age- and sex- dependent developmental differences between swimmers classified as talented versus non-talented. After controlling for confounding variables, age and sex, nine machine learning algorithms were employed, with Random Forest achieving the highest performance and being selected as the final model. The model demonstrated excellent predictive performance on both the test dataset and an independent validation dataset from Shandong ( = 118), indicating its strong generalizability. Furthermore, using the SHapley Additive exPlanations (SHAP) method to interpret the model, abdominal skinfold, lung capacity, chest circumference, shoulder width, and triceps skinfold were identified as the five most critical indicators for talent identification.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s43657-024-00176-8.

摘要

未标注

竞技游泳领域缺乏适用于各年龄段青少年游泳运动员选材的广泛适用的预测模型。本研究旨在基于人体测量和生理数据,使用机器学习方法构建运动天赋预测模型。2015年至2018年期间,从中国上海的5444名10 - 18岁参与者中收集基线数据,其中4969人完成了3年随访。根据随访期间的表现来识别天赋,结果显示,在被归类为有天赋和无天赋的游泳运动员之间,存在与年龄和性别相关的发育差异。在控制了年龄和性别等混杂变量后,使用了九种机器学习算法,随机森林算法表现最佳,被选为最终模型。该模型在测试数据集和来自山东的独立验证数据集(n = 118)上均表现出优异的预测性能,表明其具有很强的泛化能力。此外,使用SHapley加性解释(SHAP)方法对模型进行解释,确定腹部皮褶厚度、肺活量、胸围、肩宽和肱三头肌皮褶厚度是识别天赋的五个最关键指标。

补充信息

在线版本包含可在10.1007/s43657-024-00176-8获取的补充材料。

相似文献

本文引用的文献

7
The hypothalamus for whole-body physiology: from metabolism to aging.下丘脑与全身生理学:从代谢到衰老。
Protein Cell. 2022 Jun;13(6):394-421. doi: 10.1007/s13238-021-00834-x. Epub 2021 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验