Yang Kan, Yan Yuqing, Yu Anni, Zhang Ru, Zhang Yuefang, Qiu Zilong, Li Zhengyi, Zhang Qianlong, Wu Shihao, Li Fei
Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine; Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai; College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China.
School of Medicine, Yunnan University, Kunming, Yunnan Province, China.
Neural Regen Res. 2024 May;19(5):998-1005. doi: 10.4103/1673-5374.385281.
Mitochondria are critical cellular energy resources and are central to the life of the neuron. Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis. Mature neurons are postmitotic and consume substantial energy, thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria. Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases. However, more work is needed to study mitophagy pathway components as potential therapeutic targets. In this review, we briefly discuss the characteristics of nonselective autophagy and selective autophagy, including ERphagy, aggrephagy, and mitophagy. We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions. Next, we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy. Importantly, we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Last, we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases. Together, our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.
线粒体是细胞关键的能量来源,对神经元的生命活动至关重要。线粒体自噬通过自噬机制选择性清除受损或功能失调的线粒体,以维持线粒体的质量控制和内稳态。成熟神经元处于有丝分裂后阶段,消耗大量能量,因此需要高效的线粒体自噬途径来更新受损或功能失调的线粒体。最近的证据表明,线粒体自噬在神经疾病的发病机制中起关键作用。然而,需要更多研究来探讨作为潜在治疗靶点的线粒体自噬途径成分。在本综述中,我们简要讨论非选择性自噬和选择性自噬的特征,包括内质网自噬、聚集体自噬和线粒体自噬。然后我们介绍生理条件下帕金蛋白依赖性和非依赖性线粒体自噬途径的机制。接下来,我们总结介导线粒体自噬的线粒体膜受体和磷脂的多种类型。重要的是,我们综述线粒体自噬在包括阿尔茨海默病、帕金森病和肌萎缩侧索硬化症在内的神经退行性疾病发病机制中的关键作用。最后,我们讨论将线粒体自噬视为治疗神经退行性疾病潜在治疗靶点的最新研究。总之,我们的综述可能为更好地理解线粒体自噬在神经退行性疾病发病机制中的作用提供新观点。