Meister Felix, Passerini Tiziano, Audigier Chloé, Lluch Èric, Mihalef Viorel, Ashikaga Hiroshi, Maier Andreas, Halperin Henry, Mansi Tommaso
Pattern Recognition Lab, Friedrich-Alexander University, Erlangen, Germany.
Digital Technology and Innovation, Siemens Healthineers, Erlangen, Germany.
Front Physiol. 2021 Oct 18;12:694869. doi: 10.3389/fphys.2021.694869. eCollection 2021.
Electroanatomic mapping is the gold standard for the assessment of ventricular tachycardia. Acquiring high resolution electroanatomic maps is technically challenging and may require interpolation methods to obtain dense measurements. These methods, however, cannot recover activation times in the entire biventricular domain. This work investigates the use of graph convolutional neural networks to estimate biventricular activation times from sparse measurements. Our method is trained on more than 15,000 synthetic examples of realistic ventricular depolarization patterns generated by a computational electrophysiology model. Using geometries sampled from a statistical shape model of biventricular anatomy, diverse wave dynamics are induced by randomly sampling scar and border zone distributions, locations of initial activation, and tissue conduction velocities. Once trained, the method accurately reconstructs biventricular activation times in left-out synthetic simulations with a mean absolute error of 3.9 ms ± 4.2 ms at a sampling density of one measurement sample per cm. The total activation time is matched with a mean error of 1.4 ms ± 1.4 ms. A significant decrease in errors is observed in all heart zones with an increased number of samples. Without re-training, the network is further evaluated on two datasets: (1) an in-house dataset comprising four ischemic porcine hearts with dense endocardial activation maps; (2) the CRT-EPIGGY19 challenge data comprising endo- and epicardial measurements of 5 infarcted and 6 non-infarcted swines. In both setups the neural network recovers biventricular activation times with a mean absolute error of less than 10 ms even when providing only a subset of endocardial measurements as input. Furthermore, we present a simple approach to suggest new measurement locations in real-time based on the estimated uncertainty of the graph network predictions. The model-guided selection of measurement locations allows to reduce by 40% the number of measurements required in a random sampling strategy, while achieving the same prediction error. In all the tested scenarios, the proposed approach estimates biventricular activation times with comparable or better performance than a personalized computational model and significant runtime advantages.
电解剖标测是评估室性心动过速的金标准。获取高分辨率电解剖图在技术上具有挑战性,可能需要插值方法来获得密集测量值。然而,这些方法无法恢复整个双心室区域的激活时间。这项工作研究了使用图卷积神经网络从稀疏测量值估计双心室激活时间。我们的方法在由计算电生理模型生成的超过15000个逼真的心室去极化模式的合成示例上进行训练。使用从双心室解剖结构的统计形状模型中采样的几何形状,通过随机采样瘢痕和边界区域分布、初始激活位置和组织传导速度来诱导不同的波动态。一旦训练完成,该方法在留出的合成模拟中准确重建双心室激活时间,在每厘米一个测量样本的采样密度下,平均绝对误差为3.9 ms±4.2 ms。总激活时间匹配,平均误差为1.4 ms±1.4 ms。随着样本数量的增加,所有心脏区域的误差均显著降低。无需重新训练,该网络在两个数据集上进一步评估:(1)一个内部数据集,包括四个具有密集心内膜激活图的缺血性猪心脏;(2)CRT-EPIGGY19挑战数据,包括5个梗死猪和6个非梗死猪的心内膜和心外膜测量值。在这两种设置中,即使仅提供心内膜测量值的一个子集作为输入,神经网络也能以小于10 ms的平均绝对误差恢复双心室激活时间。此外,我们提出了一种简单的方法,基于图网络预测的估计不确定性实时建议新的测量位置。测量位置的模型引导选择允许将随机采样策略所需的测量数量减少40%,同时实现相同的预测误差。在所有测试场景中,所提出的方法估计双心室激活时间的性能与个性化计算模型相当或更好,并且具有显著的运行时优势。