Suppr超能文献

通过降阶建模和分类推导左心室血流的可解释指标

Deriving Explainable Metrics of Left Ventricular Flow by Reduced-Order Modeling and Classification.

作者信息

Borja María Guadalupe, Martinez-Legazpi Pablo, Nguyen Cathleen, Flores Oscar, Kahn Andrew M, Bermejo Javier, Del Álamo Juan C

机构信息

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA.

Department of Mathematical Physics and Fluids, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED and CIBERCV, Madrid, Spain.

出版信息

medRxiv. 2023 Oct 5:2023.10.03.23296524. doi: 10.1101/2023.10.03.23296524.

Abstract

BACKGROUND

Extracting explainable flow metrics is a bottleneck to the clinical translation of advanced cardiac flow imaging modalities. We hypothesized that reduced-order models (ROMs) of intraventricular flow are a suitable strategy for deriving simple and interpretable clinical metrics suitable for further assessments. Combined with machine learning (ML) flow-based ROMs could provide new insight to help diagnose and risk-stratify patients.

METHODS

We analyzed 2D color-Doppler echocardiograms of 81 non-ischemic dilated cardiomyopathy (DCM) patients, 51 hypertrophic cardiomyopathy (HCM) patients, and 77 normal volunteers (Control). We applied proper orthogonal decomposition (POD) to build patient-specific and cohort-specific ROMs of LV flow. Each ROM aggregates a low number of components representing a spatially dependent velocity map modulated along the cardiac cycle by a time-dependent coefficient. We tested three classifiers using deliberately simple ML analyses of these ROMs with varying supervision levels. In supervised models, hyperparameter gridsearch was used to derive the ROMs that maximize classification power. The classifiers were blinded to LV chamber geometry and function. We ran vector flow mapping on the color-Doppler sequences to help visualize flow patterns and interpret the ML results.

RESULTS

POD-based ROMs stably represented each cohort through 10-fold cross-validation. The principal POD mode captured >80% of the flow kinetic energy (KE) in all cohorts and represented the LV filling/emptying jets. Mode 2 represented the diastolic vortex and its KE contribution ranged from <1% (HCM) to 13% (DCM). Semi-unsupervised classification using patient-specific ROMs revealed that the KE ratio of these two principal modes, the vortex-to-jet (V2J) energy ratio, is a simple, interpretable metric that discriminates DCM, HCM, and Control patients. Receiver operating characteristic curves using V2J as classifier had areas under the curve of 0.81, 0.91, and 0.95 for distinguishing HCM vs. Control, DCM vs. Control, and DCM vs. HCM, respectively.

CONCLUSIONS

Modal decomposition of cardiac flow can be used to create ROMs of normal and pathological flow patterns, uncovering simple interpretable flow metrics with power to discriminate disease states, and particularly suitable for further processing using ML.

摘要

背景

提取可解释的血流指标是先进心脏血流成像模式临床转化的瓶颈。我们假设心室血流的降阶模型(ROMs)是推导适用于进一步评估的简单且可解释的临床指标的合适策略。结合机器学习(ML),基于血流的ROMs可以提供新的见解,以帮助诊断患者并进行风险分层。

方法

我们分析了81例非缺血性扩张型心肌病(DCM)患者、51例肥厚型心肌病(HCM)患者和77名正常志愿者(对照组)的二维彩色多普勒超声心动图。我们应用适当正交分解(POD)来构建左心室血流的患者特异性和队列特异性ROMs。每个ROM聚合了少量成分,这些成分代表了一个随时间变化的系数在心动周期中调制的空间相关速度图。我们使用对这些ROMs进行的不同监督水平的故意简单的ML分析测试了三种分类器。在监督模型中,使用超参数网格搜索来推导使分类能力最大化的ROMs。分类器对左心室腔的几何形状和功能不知情。我们对彩色多普勒序列进行向量血流映射,以帮助可视化血流模式并解释ML结果。

结果

基于POD的ROMs通过10倍交叉验证稳定地代表了每个队列。主要的POD模式在所有队列中捕获了>80%的血流动能(KE),并代表了左心室充盈/排空射流。模式2代表舒张期涡流,其KE贡献范围从<1%(HCM)到13%(DCM)。使用患者特异性ROMs的半无监督分类显示,这两个主要模式的KE比率,即涡流向射流(V2J)能量比率,是一个简单、可解释的指标,可区分DCM、HCM和对照组患者。使用V2J作为分类器的受试者操作特征曲线在区分HCM与对照组、DCM与对照组以及DCM与HCM时的曲线下面积分别为0.81、0.91和0.95。

结论

心脏血流的模态分解可用于创建正常和病理血流模式的ROMs,揭示具有区分疾病状态能力的简单可解释血流指标,特别适合使用ML进行进一步处理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed4/10593009/eb31c1fdc42b/nihpp-2023.10.03.23296524v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验