Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.
J Magn Reson Imaging. 2024 Aug;60(2):510-522. doi: 10.1002/jmri.29088. Epub 2023 Oct 25.
"Batch effect" in MR images, due to vendor-specific features, MR machine generations, and imaging parameters, challenges image quality and hinders deep learning (DL) model generalizability.
We aim to develop a DL model using contrast adjustment and super-resolution to reduce diffusion-weighted images (DWIs) diversity across magnetic field strengths and imaging parameters.
Retrospective.
The DL model was built using an open dataset from one individual. The MR machine identification model was trained and validated on a dataset of 1134 adults (54% females, 46% males), with 1050 subjects showing no DWI abnormalities and 84 with conditions like stroke and tumors. The 21,000 images were divided into 80% for training, 20% for validation, and 3500 for testing.
FIELD STRENGTH/SEQUENCE: Seven MR scanners from four manufacturers with 1.5 T and 3 T magnetic field strengths. DWIs were acquired using spin-echo sequences and high-resolution T2WIs using the T2-SPACE sequence.
An experienced, board-certified radiologist evaluated the effectiveness of restoring high-resolution T2WI and harmonizing diverse DWI with metrics such as PSNR and SSIM, and the texture and frequency attributes were further analyzed using gray-level co-occurrence matrix and 1-dimensional power spectral density. The model's impact on machine-specific characteristics was gauged through the performance metrics of a ResNet-50 model. Comprehensive statistical tests were employed for statistical robustness, including McNemar's test and the Dice index.
Our DL protocol reduced DWI contrast and resolution variation. ResNet-50 model's accuracy decreased from 0.9443 to 0.5786, precision from 0.9442 to 0.6494, recall from 0.9443 to 0.5786, and F1 score from 0.9438 to 0.5587. The t-SNE visualization indicated more consistent image features across multiple MR devices. Autoencoder halved learning iterations; Dice coefficient >0.74 confirmed signal reproducibility in 84 lesions.
This study presents a DL strategy to mitigate batch effects in diffusion MR images, improving their quality and generalizability.
3 TECHNICAL EFFICACY: Stage 1.
由于供应商特定的特点、磁共振机器的代际以及成像参数的影响,磁共振图像中的“批次效应”会影响图像质量,并阻碍深度学习(DL)模型的泛化能力。
我们旨在开发一种使用对比度调整和超分辨率的 DL 模型,以减少不同磁场强度和成像参数下的扩散加权图像(DWI)的多样性。
回顾性研究。
该 DL 模型是使用来自一个个体的开放数据集构建的。MR 机器识别模型在包含 1134 名成年人的数据集上进行了训练和验证(54%为女性,46%为男性),其中 1050 名受试者没有 DWI 异常,84 名受试者有中风和肿瘤等病症。21000 张图像被分为 80%用于训练,20%用于验证,3500 张用于测试。
磁场强度/序列:来自四个制造商的七台 1.5T 和 3T 磁共振扫描仪。DWI 使用自旋回波序列采集,高分辨率 T2WI 使用 T2-SPACE 序列采集。
一位经验丰富、具有董事会认证资质的放射科医生使用 PSNR 和 SSIM 等指标评估了恢复高分辨率 T2WI 和协调不同 DWI 的效果,并使用灰度共生矩阵和一维功率谱密度进一步分析了纹理和频率属性。通过 ResNet-50 模型的性能指标来衡量模型对特定机器特征的影响。采用全面的统计检验方法来确保统计稳健性,包括 McNemar 检验和 Dice 指数。
我们的 DL 方案降低了 DWI 的对比度和分辨率变化。ResNet-50 模型的准确性从 0.9443 下降到 0.5786,精度从 0.9442 下降到 0.6494,召回率从 0.9443 下降到 0.5786,F1 评分从 0.9438 下降到 0.5587。t-SNE 可视化显示,在多个磁共振设备上的图像特征更加一致。自动编码器将学习迭代减半;84 个病变的 Dice 系数>0.74 证实了信号的可重复性。
本研究提出了一种用于减轻扩散磁共振图像中批次效应的 DL 策略,提高了图像的质量和泛化能力。
3 级技术功效:第 1 阶段。