Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.
J Dent Res. 2023 Dec;102(13):1434-1443. doi: 10.1177/00220345231198228. Epub 2023 Oct 26.
Biomimetic strategies like peptide-guided collagen mineralization promise to enhance the effectiveness of dentin remineralization. We recently reported that rationally designed amelogenin-derived peptides P26 and P32 promoted apatite nucleation, mineralized collagen, and showed potential in enamel regrowth and dentin remineralization. To facilitate the clinical application of amelogenin-derived peptides and to uncover their effectiveness in repairing dentin, we have now implemented a chitosan (CS) hydrogel for peptide delivery and have investigated the effects of P26-CS and P32-CS hydrogels on dentin remineralization using 2 in situ experimental models that exhibited different levels of demineralization. The efficacy of the peptide-CS hydrogels in dentin repair was evaluated by characterizing the microstructure, mineral density, mineral phase, and nanomechanical properties of the remineralized samples. The new strategy of atomic force microscopy PeakForce quantitative nanomechanical mapping was used for direct visualization and nanomechanical analysis of repaired dentin lesions across the lesion depth. Results from the 2 models indicated the potential triple functions of peptide-CS hydrogels for dentin repair: building a highly organized protective mineralized layer on dentin, occluding dentinal tubules by peptide-guided in situ mineralization, and promoting biomimetic dentinal collagen remineralization. Importantly, peptides released from the CS hydrogel could diffuse into the dentinal matrix and penetrate the dentinal tubules, leading to both surface and subsurface remineralization and tubule occlusion. Given our previous findings on peptide-CS hydrogels' potential for remineralizing enamel, we see further promise for hydrogels to treat tooth defects involving multiple hard tissues, as in the case of noncarious cervical lesions.
仿生策略,如肽引导的胶原矿化,有望提高牙本质再矿化的效果。我们最近报道了,合理设计的釉原蛋白衍生肽 P26 和 P32 可促进磷灰石成核、矿化胶原,并在釉质再生和牙本质再矿化方面显示出潜力。为了促进釉原蛋白衍生肽的临床应用,并研究其在修复牙本质方面的有效性,我们现在已经实施了壳聚糖(CS)水凝胶来输送肽,并使用 2 种具有不同脱矿化程度的原位实验模型来研究 P26-CS 和 P32-CS 水凝胶对牙本质再矿化的影响。通过对再矿化样本的微观结构、矿化密度、矿相和纳米力学特性进行表征,评估了肽-CS 水凝胶在牙本质修复中的功效。原子力显微镜的新策略——峰值力定量纳米力学映射,用于直接可视化和纳米力学分析整个病变深度的修复牙本质病变。来自 2 个模型的结果表明,肽-CS 水凝胶在牙本质修复方面具有三重功能的潜力:在牙本质上构建高度有序的保护性矿化层,通过肽引导的原位矿化封闭牙本质小管,并促进仿生牙本质胶原再矿化。重要的是,从 CS 水凝胶中释放的肽可以扩散到牙本质基质中并渗透到牙本质小管中,从而导致表面和次表面再矿化和小管封闭。鉴于我们之前关于肽-CS 水凝胶对釉质再矿化的潜力的发现,我们看到水凝胶在治疗涉及多种硬组织的牙齿缺陷方面有进一步的前景,例如非龋性颈段病变。