Sampath Kumar Arunodhayan, Schlosser Tobias, Langner Holger, Ritter Marc, Kowerko Danny
Junior Professorship of Media Computing, Chemnitz University of Technology, 09107 Chemnitz, Germany.
Professorship of Media Informatics, University of Applied Sciences Mittweida, 09648 Mittweida, Germany.
Bioengineering (Basel). 2023 Oct 10;10(10):1177. doi: 10.3390/bioengineering10101177.
Optical coherence tomography (OCT)-based retinal imagery is often utilized to determine influential factors in patient progression and treatment, for which the retinal layers of the human eye are investigated to assess a patient's health status and eyesight. In this contribution, we propose a machine learning (ML)-based multistage system of stacked multiscale encoders and decoders for the image segmentation of OCT imagery of the retinal layers to enable the following evaluation regarding the physiological and pathological states. Our proposed system's results highlight its benefits compared to currently investigated approaches by combining commonly deployed methods from deep learning (DL) while utilizing deep neural networks (DNN). We conclude that by stacking multiple multiscale encoders and decoders, improved scores for the image segmentation task can be achieved. Our retinal-layer-based segmentation results in a final segmentation performance of up to 82.25±0.74% for the Sørensen-Dice coefficient, outperforming the current best single-stage model by 1.55% with a score of 80.70±0.20%, given the evaluated peripapillary OCT data set. Additionally, we provide results on the data sets Duke SD-OCT, Heidelberg, and UMN to illustrate our model's performance on especially noisy data sets.
基于光学相干断层扫描(OCT)的视网膜图像通常用于确定患者病情进展和治疗中的影响因素,为此需研究人眼的视网膜层以评估患者的健康状况和视力。在本论文中,我们提出了一种基于机器学习(ML)的多级系统,该系统由堆叠的多尺度编码器和解码器组成,用于视网膜层OCT图像的分割,以便对生理和病理状态进行后续评估。我们提出的系统的结果表明,通过结合深度学习(DL)中常用的方法并利用深度神经网络(DNN),与目前研究的方法相比,它具有优势。我们得出结论,通过堆叠多个多尺度编码器和解码器,可以提高图像分割任务的分数。对于所评估的视乳头周围OCT数据集,我们基于视网膜层的分割结果在索伦森-迪赛系数(Sørensen-Dice coefficient)方面的最终分割性能高达82.25±0.74%,比当前最佳的单阶段模型高出1.55%,后者的分数为80.70±0.20%。此外,我们还提供了在杜克SD-OCT、海德堡和明尼苏达大学(UMN)数据集上的结果,以说明我们的模型在特别嘈杂的数据集上的性能。