Kumanchik Lee, Rezinkina Marina, Braxmaier Claus
Department of Quantum Metrology, Institute for Quantum Technologies, German Aerospace Center (DLR e.V.), 2022 Wilhem-Runge-Straße 10, 89081 Ulm, Germany.
Institute for Microelectronics, University of Ulm, 2022 Albert-Einstein-Allee 43, 89081 Ulm, Germany.
Micromachines (Basel). 2023 Sep 28;14(10):1865. doi: 10.3390/mi14101865.
In this paper, the mechanical characteristics of a miniature optomechanical accelerometer, similar to those proposed for a wide range of applications, have been investigated. With the help of numerical modelling, characteristics such as eigenfrequencies, quality factor, displacement magnitude, normalized translations, normalized rotations versus eigenfrequencies, as well as spatial distributions of the azimuthal and axial displacements and stored energy density in a wide frequency range starting from the stationary case have been obtained. Dependencies of the main mechanical characteristics versus the minimal and maximal system dimensions have been plotted. Geometries of the optomechanical accelerometers with micron size parts providing the low and the high first eigenfrequencies are presented. It is shown that via the choice of the geometrical parameters, the minimal measured acceleration level can be raised substantially.
在本文中,对一种微型光机械加速度计的机械特性进行了研究,该加速度计与广泛应用中所提出的类似。借助数值建模,获得了诸如本征频率、品质因数、位移大小、归一化平移、归一化旋转与本征频率的关系,以及从静止状态开始的宽频率范围内方位角和轴向位移的空间分布和存储能量密度等特性。绘制了主要机械特性与系统最小和最大尺寸的关系图。给出了具有微米级部件的光机械加速度计的几何结构,这些结构提供了低和高的第一本征频率。结果表明,通过选择几何参数,可以大幅提高最小测量加速度水平。