Reschovsky Benjamin J, Long David A, Zhou Feng, Bao Yiliang, Allen Richard A, LeBrun Thomas W, Gorman Jason J
Opt Express. 2022 May 23;30(11):19510-19523. doi: 10.1364/OE.457499.
We demonstrate a microfabricated optomechanical accelerometer that is capable of percent-level accuracy without external calibration. To achieve this capability, we use a mechanical model of the device behavior that can be characterized by the thermal noise response along with an optical frequency comb readout method that enables high sensitivity, high bandwidth, high dynamic range, and SI-traceable displacement measurements. The resulting intrinsic accuracy was evaluated over a wide frequency range by comparing to a primary vibration calibration system and local gravity. The average agreement was found to be 2.1 % for the calibration system between 0.1 kHz and 15 kHz and better than 0.2 % for the static acceleration. This capability has the potential to replace costly external calibrations and improve the accuracy of inertial guidance systems and remotely deployed accelerometers. Due to the fundamental nature of the intrinsic accuracy approach, it could be extended to other optomechanical transducers, including force and pressure sensors.
我们展示了一种无需外部校准就能达到百分比级精度的微纳加工光机械加速度计。为实现这一性能,我们采用了一种能通过热噪声响应来表征的器件行为力学模型,以及一种能实现高灵敏度、高带宽、高动态范围和国际单位制可溯源位移测量的光学频率梳读出方法。通过与一级振动校准系统和当地重力进行比较,在很宽的频率范围内对由此产生的固有精度进行了评估。在校准系统中,0.1千赫至15千赫之间的平均一致性为2.1%,静态加速度的一致性优于0.2%。这种性能有可能取代昂贵的外部校准,并提高惯性制导系统和远程部署加速度计的精度。由于固有精度方法的基本特性,它可以扩展到其他光机械换能器,包括力传感器和压力传感器。