Suppr超能文献

利用光机械加速度计实现本质精确传感。

Intrinsically accurate sensing with an optomechanical accelerometer.

作者信息

Reschovsky Benjamin J, Long David A, Zhou Feng, Bao Yiliang, Allen Richard A, LeBrun Thomas W, Gorman Jason J

出版信息

Opt Express. 2022 May 23;30(11):19510-19523. doi: 10.1364/OE.457499.

Abstract

We demonstrate a microfabricated optomechanical accelerometer that is capable of percent-level accuracy without external calibration. To achieve this capability, we use a mechanical model of the device behavior that can be characterized by the thermal noise response along with an optical frequency comb readout method that enables high sensitivity, high bandwidth, high dynamic range, and SI-traceable displacement measurements. The resulting intrinsic accuracy was evaluated over a wide frequency range by comparing to a primary vibration calibration system and local gravity. The average agreement was found to be 2.1 % for the calibration system between 0.1 kHz and 15 kHz and better than 0.2 % for the static acceleration. This capability has the potential to replace costly external calibrations and improve the accuracy of inertial guidance systems and remotely deployed accelerometers. Due to the fundamental nature of the intrinsic accuracy approach, it could be extended to other optomechanical transducers, including force and pressure sensors.

摘要

我们展示了一种无需外部校准就能达到百分比级精度的微纳加工光机械加速度计。为实现这一性能,我们采用了一种能通过热噪声响应来表征的器件行为力学模型,以及一种能实现高灵敏度、高带宽、高动态范围和国际单位制可溯源位移测量的光学频率梳读出方法。通过与一级振动校准系统和当地重力进行比较,在很宽的频率范围内对由此产生的固有精度进行了评估。在校准系统中,0.1千赫至15千赫之间的平均一致性为2.1%,静态加速度的一致性优于0.2%。这种性能有可能取代昂贵的外部校准,并提高惯性制导系统和远程部署加速度计的精度。由于固有精度方法的基本特性,它可以扩展到其他光机械换能器,包括力传感器和压力传感器。

相似文献

1
Intrinsically accurate sensing with an optomechanical accelerometer.
Opt Express. 2022 May 23;30(11):19510-19523. doi: 10.1364/OE.457499.
2
Gyro-Free Inertial Navigation Systems Based on Linear Opto-Mechanical Accelerometers.
Sensors (Basel). 2023 Apr 19;23(8):4093. doi: 10.3390/s23084093.
3
A Chip-Scale Oscillation-Mode Optomechanical Inertial Sensor Near the Thermodynamical Limits.
Laser Photon Rev. 2020 May;14(5). doi: 10.1002/lpor.201800329. Epub 2020 Apr 8.
4
Estimation and Error Analysis for Optomechanical Inertial Sensors.
Sensors (Basel). 2021 Sep 11;21(18):6101. doi: 10.3390/s21186101.
7
Fast thermal calibration of low-grade inertial sensors and inertial measurement units.
Sensors (Basel). 2013 Sep 12;13(9):12192-217. doi: 10.3390/s130912192.
8
High dynamic range electro-optic dual-comb interrogation of optomechanical sensors.
Opt Lett. 2022 Sep 1;47(17):4323-4326. doi: 10.1364/OL.460028.
9
Simultaneous Optical and Mechanical Sensing Based on Optomechanical Resonators.
ACS Sens. 2024 Jan 26;9(1):371-378. doi: 10.1021/acssensors.3c02103. Epub 2023 Dec 29.
10
Design of Piezoelectric Dual-Bandwidth Accelerometers for Completely Implantable Auditory Prostheses.
IEEE Sens J. 2023 Jul;23(13):13957-13965. doi: 10.1109/jsen.2023.3276271. Epub 2023 May 18.

引用本文的文献

1
Quantized State Estimation for Linear Dynamical Systems.
Sensors (Basel). 2024 Oct 1;24(19):6381. doi: 10.3390/s24196381.
4
Active-feedback quantum control of an integrated low-frequency mechanical resonator.
Nat Commun. 2023 Aug 5;14(1):4721. doi: 10.1038/s41467-023-40442-3.
5
Single-modulator, direct frequency comb spectroscopy via serrodyne modulation.
Opt Lett. 2023 Feb 15;48(4):892-895. doi: 10.1364/OL.482597.

本文引用的文献

1
High dynamic range electro-optic dual-comb interrogation of optomechanical sensors.
Opt Lett. 2022 Sep 1;47(17):4323-4326. doi: 10.1364/OL.460028.
2
A Chip-Scale Oscillation-Mode Optomechanical Inertial Sensor Near the Thermodynamical Limits.
Laser Photon Rev. 2020 May;14(5). doi: 10.1002/lpor.201800329. Epub 2020 Apr 8.
3
Electro-optic frequency combs for rapid interrogation in cavity optomechanics.
Opt Lett. 2021 Feb 1;46(3):645-648. doi: 10.1364/OL.405299.
5
Optomechanical mass spectrometry.
Nat Commun. 2020 Jul 29;11(1):3781. doi: 10.1038/s41467-020-17592-9.
6
Precision ultrasound sensing on a chip.
Nat Commun. 2019 Jan 10;10(1):132. doi: 10.1038/s41467-018-08038-4.
7
Field Evaluation of a Portable Whispering Gallery Mode Accelerometer.
Sensors (Basel). 2018 Nov 29;18(12):4184. doi: 10.3390/s18124184.
9
Concave silicon micromirrors for stable hemispherical optical microcavities.
Opt Express. 2017 Jun 26;25(13):15493-15503. doi: 10.1364/OE.25.015493.
10
Multiplexed sub-Doppler spectroscopy with an optical frequency comb.
Phys Rev A (Coll Park). 2016 Dec;94(6). doi: 10.1103/PhysRevA.94.061801. Epub 2016 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验