Carsí Marta, Sanchis María J, Serrano-Claumarchirant José F, Culebras Mario, Gómez Clara M
Department of Applied Thermodynamics, Instituto de Automática e Informática Industrial, Universitat Politècnica de Valencia, 46022 Valencia, Spain.
Department of Applied Thermodynamics, Institute of Electrical Technology (ITE), Universitat Politècnica de València, 46022 Valencia, Spain.
Polymers (Basel). 2023 Oct 13;15(20):4075. doi: 10.3390/polym15204075.
The use of wearable devices has promoted new ways of integrating these devices, one of which is through the development of smart textiles. Smart textiles must possess the mechanical and electrical properties necessary for their functionality. This study explores the impact of polymer-felt microstructure variations on their morphology, electrical, and mechanical properties. The application of thermal treatment, along with an electric field, leads to a substantial structural reorganization of the molecular chains within pristine felt. This results in a system of nanofibrils coated with MWCNT-PEDOT, characterized by highly ordered counterions that facilitate the flow of charge carriers. Both temperature and an electric field induce reversible microstructural changes in pristine felt and irreversible changes in coated felt samples. Furthermore, electropolymerization of PEDOT significantly enhances electrical conductivity, with PEDOT:BTFMSI-coated fabric exhibiting the highest conductivity.
可穿戴设备的使用推动了这些设备集成的新方式,其中之一是通过智能纺织品的开发。智能纺织品必须具备其功能所需的机械和电气性能。本研究探讨了聚合物毡微观结构变化对其形态、电学和力学性能的影响。热处理与电场的应用导致原始毡内分子链的大量结构重组。这产生了一个涂覆有MWCNT-PEDOT的纳米纤维系统,其特征在于高度有序的抗衡离子,有助于电荷载流子的流动。温度和电场都会在原始毡中引起可逆的微观结构变化,而在涂覆毡样品中引起不可逆的变化。此外,PEDOT的电聚合显著提高了电导率,其中PEDOT:BTFMSI涂覆的织物表现出最高的电导率。