文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于体外转录RNA的平台疫苗:过去、现在与未来

In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future.

作者信息

Perenkov Alexey D, Sergeeva Alena D, Vedunova Maria V, Krysko Dmitri V

机构信息

Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia.

Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium.

出版信息

Vaccines (Basel). 2023 Oct 16;11(10):1600. doi: 10.3390/vaccines11101600.


DOI:10.3390/vaccines11101600
PMID:37897003
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10610676/
Abstract

mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.

摘要

信使核糖核酸(mRNA)于1961年被发现,但直到三十年后才被用作疫苗。最近,mRNA疫苗技术的发展因对抗新冠病毒疫苗的研发而获得了巨大推动力。为了改善RNA疫苗的特性,主要是其循环时间,人们开发了自我扩增mRNA和转扩增mRNA。mRNA技术的一个独立分支是环状RNA疫苗,它是随着在其蛋白质基质上进行翻译的可能性被发现而开发的。环状RNA相对于mRNA疫苗具有若干优势,并且被认为是一个相当有前景的平台,转扩增mRNA也是如此。本文综述了mRNA平台,并对在其基础上创建的更现代的自我扩增mRNA、转扩增mRNA和环状RNA平台进行了批判性讨论。最后,讨论了所介绍的每个mRNA平台的主要特点、优点和缺点。这一讨论将有助于在选择最适合的平台来研发针对癌症或病毒性疾病的RNA疫苗时的决策过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/65b682aaa999/vaccines-11-01600-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/0a86bf0777bf/vaccines-11-01600-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/daa7800f2853/vaccines-11-01600-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/ecf34bc3ba31/vaccines-11-01600-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/2bf4a1fefb27/vaccines-11-01600-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/0322869597cf/vaccines-11-01600-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/8d71e9f0deac/vaccines-11-01600-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/1e4ad4b3d62c/vaccines-11-01600-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/eb79b3cd402a/vaccines-11-01600-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/65b682aaa999/vaccines-11-01600-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/0a86bf0777bf/vaccines-11-01600-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/daa7800f2853/vaccines-11-01600-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/ecf34bc3ba31/vaccines-11-01600-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/2bf4a1fefb27/vaccines-11-01600-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/0322869597cf/vaccines-11-01600-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/8d71e9f0deac/vaccines-11-01600-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/1e4ad4b3d62c/vaccines-11-01600-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/eb79b3cd402a/vaccines-11-01600-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ae/10610676/65b682aaa999/vaccines-11-01600-g009.jpg

相似文献

[1]
In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future.

Vaccines (Basel). 2023-10-16

[2]
The Importance of RNA-Based Vaccines in the Fight against COVID-19: An Overview.

Vaccines (Basel). 2021-11-17

[3]
Trans-Amplifying RNA: A Journey from Alphavirus Research to Future Vaccines.

Viruses. 2024-3-25

[4]
Trans-Amplifying RNA Vaccines Against Infectious Diseases: A Comparison with Non-Replicating and Self-Amplifying RNA.

Methods Mol Biol. 2024

[5]
mRNA vaccines: Past, present, future.

Asian J Pharm Sci. 2022-7

[6]
Immunogenicity and safety of a booster dose of a self-amplifying RNA COVID-19 vaccine (ARCT-154) versus BNT162b2 mRNA COVID-19 vaccine: a double-blind, multicentre, randomised, controlled, phase 3, non-inferiority trial.

Lancet Infect Dis. 2024-4

[7]
Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action.

Curr Top Microbiol Immunol. 2022

[8]
The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency.

J Control Release. 2022-2

[9]
[New Hopes in Vaccine Technology: mRNA Vaccines].

Mikrobiyol Bul. 2021-4

[10]
Amplifying mRNA vaccines: potential versatile magicians for oncotherapy.

Front Immunol. 2023

引用本文的文献

[1]
Research progress of mRNA vaccines for infectious diseases.

Eur J Med Res. 2025-8-23

[2]
Unraveling the advances of non-coding RNAs on the tumor microenvironment: innovative strategies for cancer therapies.

J Transl Med. 2025-6-2

[3]
Revolutionizing immunization: a comprehensive review of mRNA vaccine technology and applications.

Virol J. 2025-3-12

[4]
mRNA cancer vaccines from bench to bedside: a new era in cancer immunotherapy.

Biomark Res. 2024-12-18

[5]
New insights for the development of efficient DNA vaccines.

Microb Biotechnol. 2024-11

[6]
mRNA vaccines in tumor targeted therapy: mechanism, clinical application, and development trends.

Biomark Res. 2024-8-31

[7]
Biogenesis and Function of circRNAs in Pulmonary Fibrosis.

Curr Gene Ther. 2024

[8]
The inorganic pyrophosphatases of microorganisms: a structural and functional review.

PeerJ. 2024

[9]
Recent Findings on Therapeutic Cancer Vaccines: An Updated Review.

Biomolecules. 2024-4-21

本文引用的文献

[1]
Engineering a Circular Riboregulator in .

Biodes Res. 2020-9-12

[2]
Efficient circular RNA engineering by end-to-end self-targeting and splicing reaction using group I intron ribozyme.

Mol Ther Nucleic Acids. 2023-8-1

[3]
Recent Advancement in mRNA Vaccine Development and Applications.

Pharmaceutics. 2023-7-18

[4]
Cap-Independent Circular mRNA Translation Efficiency.

Vaccines (Basel). 2023-1-20

[5]
Differences in the immunogenicity of engineered circular RNAs.

J Mol Cell Biol. 2023-6-1

[6]
A Comprehensive Review of mRNA Vaccines.

Int J Mol Sci. 2023-1-31

[7]
mRNA vaccines: The future of prevention of viral infections?

J Med Virol. 2023-2

[8]
Research progress on circular RNA vaccines.

Front Immunol. 2022

[9]
A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice.

Mol Ther. 2023-6-7

[10]
Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development.

Pathogens. 2023-1-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索