Suppr超能文献

关键育儿阶段的妻子-母亲角色冲突:一种机器学习方法,用于识别在中国影响母亲抑郁症状的因素及方式。

Wife-Mother Role Conflict at the Critical Child-Rearing Stage: A Machine-Learning Approach to Identify What and How Matters in Maternal Depression Symptoms in China.

作者信息

Hong Liuzhi, Yang Ai, Liang Qi, He Yuhan, Wang Yulin, Tao Shuhan, Chen Li

机构信息

School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.

The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325035, China.

出版信息

Prev Sci. 2024 May;25(4):699-710. doi: 10.1007/s11121-023-01610-5. Epub 2023 Oct 28.

Abstract

Maternal depression (MD) was one of the most prevalent psychiatric problems worldwide. However, it easily remains untreated and misses the best time to prevent the emergence or worsening of major depressive symptoms due to under-observed stigma and the lack of effective screening tools. Thus, this study aims to develop and validate a machine learning-based MD symptoms prediction model integrating more observable and objective factors to early detect and monitor MD risk. A cross-sectional study was conducted in 10 community vaccination centers in Wenzhou, China, and a total of 1099 mothers were surveyed by using purposive sampling. A questionnaire containing questions regarding socio-demographic variables, psychophysiological variables, wife role-related variables, and mother role-related variables was used to collect data. A framework of data preprocessing, feature selection, and model evaluation was implemented to develop an optimal risk prediction model. Results demonstrated that the XG-Boost algorithm provided robust performance with the highest AUC and well-balanced sensitivity and specificity (AUC = 0.90, sensitivity = 0.74, specificity = 0.90). Furthermore, the causal mediation analysis indicated that wife-mother role conflict positively predicted MD symptoms, and it also exerted influence on mothers suffering through the mediation of anxiety and insomnia. Findings from the present study may help guide the development of MD screening tools to early detect and provide the modifiable risk factor information for timely tailored prevention.

摘要

产后抑郁(MD)是全球最普遍的精神疾病问题之一。然而,由于未被充分认识的污名化以及缺乏有效的筛查工具,产后抑郁很容易得不到治疗,从而错过预防重度抑郁症状出现或恶化的最佳时机。因此,本研究旨在开发并验证一种基于机器学习的产后抑郁症状预测模型,该模型整合了更多可观察到的客观因素,以早期检测和监测产后抑郁风险。在中国温州的10个社区疫苗接种中心开展了一项横断面研究,通过立意抽样法共调查了1099名母亲。使用一份包含社会人口统计学变量、心理生理变量、妻子角色相关变量和母亲角色相关变量的问卷来收集数据。实施了一个数据预处理、特征选择和模型评估的框架,以开发一个最优的风险预测模型。结果表明,XG-Boost算法表现稳健,具有最高的曲线下面积(AUC)以及平衡良好的敏感性和特异性(AUC = 0.90,敏感性 = 0.74,特异性 = 0.90)。此外,因果中介分析表明,妻子-母亲角色冲突正向预测产后抑郁症状,并且它还通过焦虑和失眠的中介作用对母亲产生影响。本研究的结果可能有助于指导产后抑郁筛查工具的开发,以便早期检测并提供可改变的风险因素信息,从而进行及时的针对性预防。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验