Suppr超能文献

人类强化学习中偏见信心的神经和计算基础。

Neural and computational underpinnings of biased confidence in human reinforcement learning.

机构信息

General Psychology, Universität Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany.

CREED, Amsterdam School of Economics (ASE), Universiteit van Amsterdam, Roetersstraat 11, 1018 WB, Amsterdam, the Netherlands.

出版信息

Nat Commun. 2023 Oct 28;14(1):6896. doi: 10.1038/s41467-023-42589-5.

Abstract

While navigating a fundamentally uncertain world, humans and animals constantly evaluate the probability of their decisions, actions or statements being correct. When explicitly elicited, these confidence estimates typically correlates positively with neural activity in a ventromedial-prefrontal (VMPFC) network and negatively in a dorsolateral and dorsomedial prefrontal network. Here, combining fMRI with a reinforcement-learning paradigm, we leverage the fact that humans are more confident in their choices when seeking gains than avoiding losses to reveal a functional dissociation: whereas the dorsal prefrontal network correlates negatively with a condition-specific confidence signal, the VMPFC network positively encodes task-wide confidence signal incorporating the valence-induced bias. Challenging dominant neuro-computational models, we found that decision-related VMPFC activity better correlates with confidence than with option-values inferred from reinforcement-learning models. Altogether, these results identify the VMPFC as a key node in the neuro-computational architecture that builds global feeling-of-confidence signals from latent decision variables and contextual biases during reinforcement-learning.

摘要

在一个基本不确定的世界中,人类和动物不断评估他们的决策、行动或陈述正确的概率。当明确引出这些置信度估计时,它们通常与腹侧前额叶皮层 (VMPFC) 网络中的神经活动呈正相关,与背外侧和背内侧前额叶网络中的神经活动呈负相关。在这里,我们结合 fMRI 和强化学习范式,利用人类在寻求收益时比避免损失时对自己的选择更有信心的事实来揭示功能分离:虽然背侧前额叶网络与特定条件的信心信号呈负相关,但 VMPFC 网络则积极编码包括效价诱导偏差在内的任务范围的信心信号。与占主导地位的神经计算模型相反,我们发现与基于强化学习模型推断的选项值相比,与决策相关的 VMPFC 活动与信心更相关。总的来说,这些结果确定了 VMPFC 作为神经计算架构中的一个关键节点,该架构从潜在的决策变量和强化学习过程中的上下文偏差中构建全局信心信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4305/10613217/69c1cae73460/41467_2023_42589_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验