Mazumdar Hirak, Chakraborty Chinmay, Sathvik Msvpj, Jayakumar Parvati, Kaushik Ajeet
IEEE J Biomed Health Inform. 2025 Jun;29(6):3825-3832. doi: 10.1109/JBHI.2023.3328962.
This paper introduces an innovative approach for automated polyp segmentation in colonoscopy images, deploying an enhanced Pix2Pix Generative Adversarial Network (GAN) equipped with an integrated attention mechanism in the discriminator. Addressing prevalent challenges in conventional segmentation methods, such as variable polyp appearances, inconsistent image quality, and limited training data, our model significantly augments the precision and reliability of polyp segmentation. The integration of an attention mechanism enables our model to meticulously focus on the intricate features of polyps, improving segmentation accuracy. A unique training strategy, employing both real and synthetic data, is adopted to ensure the model's robust performance under a variety of conditions. The results, validated through rigorous tests on multiple public colonoscopy datasets, indicate a notable improvement in segmentation performance over existing state-of-the-art methods. Our model's enhanced ability to detect critical details early plays a pivotal role in proactive colorectal cancer detection, a key aspect of smart healthcare systems. This work represents an effective amalgamation of advanced AI techniques and the Internet of Medical Things (IoMT), signifying a noteworthy contribution to the evolution of smart healthcare systems. In conclusion, our attention-enhanced Pix2Pix GAN not only offers efficient and reliable polyp segmentation, but also showcases considerable potential for seamless integration into remote health monitoring systems, underlining the increasing relevance and efficacy of AI in advancing IoMT-enabled healthcare.
本文介绍了一种用于结肠镜检查图像中息肉自动分割的创新方法,该方法部署了一种增强的Pix2Pix生成对抗网络(GAN),在判别器中配备了集成注意力机制。针对传统分割方法中存在的普遍挑战,如息肉外观多变、图像质量不一致以及训练数据有限等问题,我们的模型显著提高了息肉分割的精度和可靠性。注意力机制的集成使我们的模型能够精心聚焦于息肉的复杂特征,提高了分割准确性。采用了一种独特的训练策略,同时使用真实数据和合成数据,以确保模型在各种条件下都具有强大的性能。通过在多个公共结肠镜检查数据集上进行严格测试验证的结果表明,与现有的最先进方法相比,分割性能有了显著提高。我们的模型早期检测关键细节的能力增强,在主动结直肠癌检测中起着关键作用,这是智能医疗系统的一个关键方面。这项工作代表了先进人工智能技术与医疗物联网(IoMT)的有效融合,对智能医疗系统的发展做出了值得注意的贡献。总之,我们的注意力增强型Pix2Pix GAN不仅提供了高效可靠的息肉分割,还展示了无缝集成到远程健康监测系统中的巨大潜力,突显了人工智能在推进基于IoMT的医疗保健方面日益增加的相关性和有效性。