Suppr超能文献

基于光和碳水化合物源优化的精准微繁殖机器学习与进化优化算法的比较分析:芽生长发育的预测与验证

Comparative Analysis of Machine Learning and Evolutionary Optimization Algorithms for Precision Micropropagation of : Prediction and Validation of Shoot Growth and Development Based on the Optimization of Light and Carbohydrate Sources.

作者信息

Pepe Marco, Hesami Mohsen, Small Finlay, Jones Andrew Maxwell Phineas

机构信息

Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada.

Department of Research and Development, Entourage Health Corp., Guelph, ON, Canada.

出版信息

Front Plant Sci. 2021 Oct 21;12:757869. doi: 10.3389/fpls.2021.757869. eCollection 2021.

Abstract

Micropropagation techniques offer opportunity to proliferate, maintain, and study dynamic plant responses in highly controlled environments without confounding external influences, forming the basis for many biotechnological applications. With medicinal and recreational interests for L. growing, research related to the optimization of practices is needed to improve current methods while boosting our understanding of the underlying physiological processes. Unfortunately, due to the exorbitantly large array of factors influencing tissue culture, existing approaches to optimize methods are tedious and time-consuming. Therefore, there is great potential to use new computational methodologies for analyzing data to develop improved protocols more efficiently. Here, we first tested the effects of light qualities using assorted combinations of Red, Blue, Far Red, and White spanning 0-100 μmol/m/s in combination with sucrose concentrations ranging from 1 to 6% (w/v), totaling 66 treatments, on shoot growth, root development, number of nodes, shoot emergence, and canopy surface area. Collected data were then assessed using multilayer perceptron (MLP), generalized regression neural network (GRNN), and adaptive neuro-fuzzy inference system (ANFIS) to model and predict growth and development. Based on the results, GRNN had better performance than MLP or ANFIS and was consequently selected to link different optimization algorithms [genetic algorithm (GA), biogeography-based optimization (BBO), interior search algorithm (ISA), and symbiotic organisms search (SOS)] for prediction of optimal light levels (quality/intensity) and sucrose concentration for various applications. Predictions of conditions to refine growth responses were subsequently tested in a validation experiment and data showed no significant differences between predicted optimized values and observed data. Thus, this study demonstrates the potential of machine learning and optimization algorithms to predict the most favorable light combinations and sucrose levels to elicit specific developmental responses. Based on these, recommendations of light and carbohydrate levels to promote specific developmental outcomes for are suggested. Ultimately, this work showcases the importance of light quality and carbohydrate supply in directing plant development as well as the power of machine learning approaches to investigate complex interactions in plant tissue culture.

摘要

微繁殖技术提供了在高度可控的环境中增殖、维持和研究动态植物反应的机会,而不受外部干扰的影响,这构成了许多生物技术应用的基础。随着对罗勒种植在药用和娱乐方面的兴趣增加,需要开展与优化种植实践相关的研究,以改进现有方法,同时加深我们对潜在生理过程的理解。不幸的是,由于影响组织培养的因素极其繁多,现有的优化方法既繁琐又耗时。因此,利用新的计算方法分析数据以更高效地开发改进方案具有很大潜力。在这里,我们首先测试了光质的影响,使用了从0至100 μmol/m²/s的红、蓝、远红和白光的各种组合,并结合1%至6%(w/v)的蔗糖浓度,总共66种处理,研究其对罗勒芽生长、根发育、节数、芽出现和冠层表面积的影响。然后使用多层感知器(MLP)、广义回归神经网络(GRNN)和自适应神经模糊推理系统(ANFIS)对收集的数据进行评估,以建模和预测罗勒的生长和发育。基于结果,GRNN的性能优于MLP或ANFIS,因此被选中与不同的优化算法[遗传算法(GA)、基于生物地理学的优化(BBO)、内部搜索算法(ISA)和共生生物搜索(SOS)]相链接,以预测各种应用的最佳光照水平(质量/强度)和蔗糖浓度。随后在验证实验中测试了用于优化生长反应的条件预测,数据显示预测的优化值与观测数据之间没有显著差异。因此,本研究证明了机器学习和优化算法在预测最有利的光照组合和蔗糖水平以引发特定发育反应方面的潜力。基于这些结果,提出了促进罗勒特定发育结果的光照和碳水化合物水平建议。最终,这项工作展示了光质和碳水化合物供应在指导植物发育中的重要性,以及机器学习方法在研究植物组织培养中复杂相互作用方面的力量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b67/8566924/c0189450c81f/fpls-12-757869-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验