Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy.
ACS Nano. 2023 Nov 28;17(22):22800-22820. doi: 10.1021/acsnano.3c07517. Epub 2023 Nov 7.
Degeneration of photoreceptors in age-related macular degeneration (AMD) is associated with oxidative stress due to the intense aerobic metabolism of rods and cones that if not properly counterbalanced by endogenous antioxidant mechanisms can precipitate photoreceptor degeneration. In spite of being a priority eye disease for its high incidence in the elderly, no effective treatments for AMD exist. While systemic administration of antioxidants has been unsuccessful in slowing down degeneration, locally administered rare-earth nanoparticles were shown to be effective in preventing retinal photo-oxidative damage. However, because of inherent problems of dispersion in biological media, limited antioxidant power, and short lifetimes, these NPs are still confined to the preclinical stage. Here we propose platinum nanoparticles (PtNPs), potent antioxidant nanozymes, as a therapeutic tool for AMD. PtNPs exhibit high catalytic activity at minimal concentrations and protect primary neurons against oxidative insults and the ensuing apoptosis. We tested the efficacy of intravitreally injected PtNPs in preventing or mitigating light damage produced in dark-reared albino Sprague-Dawley rats by electroretinography (ERG) and retina morphology and electrophysiology. We found that both preventive and postlesional treatments with PtNPs increased the amplitude of ERG responses to light stimuli. recordings demonstrated the selective preservation of ON retinal ganglion cell responses to light stimulation in lesioned retinas treated with PtNPs. PtNPs administered after light damage significantly preserved the number of photoreceptors and inhibited the inflammatory response to degeneration, while the preventive treatment had a milder effect. The data indicate that PtNPs can effectively break the vicious cycle linking oxidative stress, degeneration, and inflammation by exerting antioxidant and anti-inflammatory actions. The increased photoreceptor survival and visual performances in degenerated retinas, together with their high biocompatibility, make PtNPs a potential strategy to cure AMD.
年龄相关性黄斑变性(AMD)中的光感受器退化与氧化应激有关,这是由于杆状和锥状细胞的有氧代谢强烈,如果不能被内源性抗氧化机制适当平衡,就会导致光感受器退化。尽管 AMD 是一种优先考虑的眼部疾病,因为它在老年人中的发病率很高,但目前还没有有效的治疗方法。虽然全身给予抗氧化剂未能减缓退化,但局部给予稀土纳米粒子已被证明可有效预防视网膜光氧化损伤。然而,由于在生物介质中分散、抗氧化能力有限和寿命短的固有问题,这些纳米粒子仍局限于临床前阶段。在这里,我们提出铂纳米粒子(PtNPs)作为 AMD 的治疗工具,铂纳米粒子在最小浓度下表现出高催化活性,并保护原代神经元免受氧化损伤和随后的细胞凋亡。我们通过视网膜电图(ERG)和视网膜形态学和电生理学测试了玻璃体内注射 PtNPs 预防或减轻暗培养白化 Sprague-Dawley 大鼠光损伤的效果。我们发现,PtNPs 的预防和损伤后治疗均可增加 ERG 对光刺激的反应幅度。记录表明,PtNPs 处理的损伤视网膜中 ON 视网膜神经节细胞对光刺激的反应选择性得到了保留。光损伤后给予 PtNPs 可显著保留光感受器的数量并抑制变性的炎症反应,而预防治疗的效果则较轻。数据表明,PtNPs 通过发挥抗氧化和抗炎作用,可以有效地打破氧化应激、退化和炎症之间的恶性循环。退化视网膜中光感受器的存活率和视觉性能的提高,以及它们的高生物相容性,使 PtNPs 成为治疗 AMD 的潜在策略。