文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于在热疗和磁性粒子成像中实现突破性性能的方波场中的磁性纳米粒子。

Magnetic nanoparticles in square-wave fields for breakthrough performance in hyperthermia and magnetic particle imaging.

作者信息

Barrera Gabriele, Allia Paolo, Tiberto Paola

机构信息

INRiM, Advanced Materials Metrology and Life Sciences, Turin, Italy.

出版信息

Sci Rep. 2024 May 10;14(1):10704. doi: 10.1038/s41598-024-61580-8.


DOI:10.1038/s41598-024-61580-8
PMID:38730042
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11636937/
Abstract

Driving immobilized, single-domain magnetic nanoparticles at high frequency by square wave fields instead of sinusoidal waveforms leads to qualitative and quantitative improvements in their performance both as point-like heat sources for magnetic hyperthermia and as sensing elements in frequency-resolved techniques such as magnetic particle imaging and magnetic particle spectroscopy. The time evolution and the frequency spectrum of the cyclic magnetization of magnetite nanoparticles with random easy axes are obtained by means of a rate-equation method able to describe time-dependent effects for the particle sizes and frequencies of interest in most applications to biomedicine. In the presence of a high-frequency square-wave field, the rate equations are shown to admit an analytical solution and the periodic magnetization can be therefore described with accuracy, allowing one to single out effects which take place on different timescales. Magnetic hysteresis effects arising from the specific features of the square-wave driving field results in a breakthrough improvement of both the magnetic power released as heat to an environment in magnetic hyperthermia treatments and the magnitude of the third harmonic of the frequency spectrum of the magnetization, which plays a central role in magnetic particle imaging.

摘要

通过方波场而非正弦波形以高频驱动固定化的单畴磁性纳米颗粒,在其作为磁热疗的点状热源以及诸如磁粒子成像和磁粒子光谱等频率分辨技术中的传感元件的性能方面,带来了定性和定量的提升。通过一种速率方程方法获得了具有随机易轴的磁铁矿纳米颗粒循环磁化的时间演化和频谱,该方法能够描述在生物医学的大多数应用中所关注的颗粒尺寸和频率的时间相关效应。在高频方波场存在的情况下,速率方程被证明允许有解析解,因此可以精确描述周期性磁化,从而能够挑出在不同时间尺度上发生的效应。由方波驱动场的特定特征引起的磁滞效应导致在磁热疗中作为热量释放到环境中的磁功率以及在磁粒子成像中起核心作用的磁化频谱三次谐波幅度都有突破性的提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/55e2bb0164e1/41598_2024_61580_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/f4591dbc2d3e/41598_2024_61580_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/a8959bf6cd59/41598_2024_61580_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/fc5bdbed3d35/41598_2024_61580_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/9dee4d47eeec/41598_2024_61580_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/ca0ff91ea610/41598_2024_61580_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/dfadcc061c0d/41598_2024_61580_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/55e2bb0164e1/41598_2024_61580_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/f4591dbc2d3e/41598_2024_61580_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/a8959bf6cd59/41598_2024_61580_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/fc5bdbed3d35/41598_2024_61580_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/9dee4d47eeec/41598_2024_61580_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/ca0ff91ea610/41598_2024_61580_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/dfadcc061c0d/41598_2024_61580_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a0f/11636937/55e2bb0164e1/41598_2024_61580_Fig7_HTML.jpg

相似文献

[1]
Magnetic nanoparticles in square-wave fields for breakthrough performance in hyperthermia and magnetic particle imaging.

Sci Rep. 2024-5-10

[2]
Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms.

Nanoscale Adv. 2020-9-1

[3]
Simulating Magnetic Nanoparticle Behavior in Low-field MRI under Transverse Rotating Fields and Imposed Fluid Flow.

J Magn Magn Mater. 2010-9

[4]
Multifunctional effects in magnetic nanoparticles for precision medicine: combining magnetic particle thermometry and hyperthermia.

Nanoscale Adv. 2023-7-5

[5]
Enhancing Magnetic Hyperthermia Nanoparticle Heating Efficiency with Non-Sinusoidal Alternating Magnetic Field Waveforms.

Nanomaterials (Basel). 2021-11-29

[6]
Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia.

Sci Rep. 2018-1-19

[7]
Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths.

Molecules. 2021-2-4

[8]
Magnetic particle hyperthermia: Néel relaxation in magnetic nanoparticles under circularly polarized field.

J Phys Condens Matter. 2009-3-25

[9]
[Detection method of nonlinear magnetized harmonic signal of medical magnetic nanoparticles].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021-2-25

[10]
How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.

Nanoscale. 2021-10-1

引用本文的文献

[1]
Pulsed Alternating Fields Magnetic Hyperthermia in Combination with Chemotherapy (5-Fluorouracil) as a Cancer Treatment for Glioblastoma Multiform: An In Vitro Study.

Nanomaterials (Basel). 2025-4-5

[2]
Enhanced Biodiesel Production with Eversa Transform 2.0 Lipase on Magnetic Nanoparticles.

Langmuir. 2024-12-24

本文引用的文献

[1]
Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines.

Int J Mol Sci. 2023-11-3

[2]
Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer.

Nanomaterials (Basel). 2022-8-12

[3]
Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives.

Nanomaterials (Basel). 2022-5-25

[4]
Particle interactions and their effect on magnetic particle spectroscopy and imaging.

Nanoscale. 2022-5-19

[5]
Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality.

Nanoscale. 2022-3-10

[6]
Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves.

ACS Appl Bio Mater. 2021-8-16

[7]
Enhancing Magnetic Hyperthermia Nanoparticle Heating Efficiency with Non-Sinusoidal Alternating Magnetic Field Waveforms.

Nanomaterials (Basel). 2021-11-29

[8]
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.

Chem Soc Rev. 2021-10-18

[9]
Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review.

Artif Organs. 2021-11

[10]
Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach.

Nanoscale. 2021-2-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索