Suppr超能文献

用于实时X射线计算机断层扫描的即时深度学习

Just-in-time deep learning for real-time X-ray computed tomography.

作者信息

Graas Adriaan, Coban Sophia Bethany, Batenburg K Joost, Lucka Felix

机构信息

Computational Imaging, CWI, 1098 XG, Amsterdam, The Netherlands.

Frazer-Nash Consultancy, Leatherhead, KT22 7NL, Surrey, UK.

出版信息

Sci Rep. 2023 Nov 16;13(1):20070. doi: 10.1038/s41598-023-46028-9.

Abstract

Real-time X-ray tomography pipelines, such as implemented by RECAST3D, compute and visualize tomographic reconstructions in milliseconds, and enable the observation of dynamic experiments in synchrotron beamlines and laboratory scanners. For extending real-time reconstruction by image processing and analysis components, Deep Neural Networks (DNNs) are a promising technology, due to their strong performance and much faster run-times compared to conventional algorithms. DNNs may prevent experiment repetition by simplifying real-time steering and optimization of the ongoing experiment. The main challenge of integrating DNNs into real-time tomography pipelines, however, is that they need to learn their task from representative data before the start of the experiment. In scientific environments, such training data may not exist, and other uncertain and variable factors, such as the set-up configuration, reconstruction parameters, or user interaction, cannot easily be anticipated beforehand, either. To overcome these problems, we developed just-in-time learning, an online DNN training strategy that takes advantage of the spatio-temporal continuity of consecutive reconstructions in the tomographic pipeline. This allows training and deploying comparatively small DNNs during the experiment. We provide software implementations, and study the feasibility and challenges of the approach by training the self-supervised Noise2Inverse denoising task with X-ray data replayed from real-world dynamic experiments.

摘要

实时X射线断层扫描流程,例如由RECAST3D实现的流程,能在数毫秒内计算并可视化断层重建结果,并能够在同步加速器光束线和实验室扫描仪中观察动态实验。为了通过图像处理和分析组件扩展实时重建功能,深度神经网络(DNN)是一项很有前景的技术,因为与传统算法相比,它具有强大的性能和更快的运行时间。DNN可以通过简化正在进行的实验的实时控制和优化来避免实验重复。然而,将DNN集成到实时断层扫描流程中的主要挑战在于,它们需要在实验开始前从代表性数据中学习任务。在科学环境中,可能不存在这样的训练数据,而且其他不确定和可变因素,如设置配置、重建参数或用户交互,也不容易事先预测。为了克服这些问题,我们开发了即时学习,这是一种在线DNN训练策略,它利用了断层扫描流程中连续重建的时空连续性。这使得在实验期间能够训练和部署相对较小的DNN。我们提供了软件实现,并通过使用从真实世界动态实验中回放的X射线数据训练自监督的Noise2Inverse去噪任务,研究了该方法的可行性和挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50b7/10654383/c470eb05e02e/41598_2023_46028_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验