Suppr超能文献

机器学习识别代谢相关脂肪性肝病(MASLD)合并糖代谢异常的糖尿病患者心力衰竭的危险因素:西里西亚糖尿病-心脏研究。

Machine learning identification of risk factors for heart failure in patients with diabetes mellitus with metabolic dysfunction associated steatotic liver disease (MASLD): the Silesia Diabetes-Heart Project.

机构信息

Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland.

Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK.

出版信息

Cardiovasc Diabetol. 2023 Nov 20;22(1):318. doi: 10.1186/s12933-023-02014-z.

Abstract

BACKGROUND

Diabetes mellitus (DM), heart failure (HF) and metabolic dysfunction associated steatotic liver disease (MASLD) are overlapping diseases of increasing prevalence. Because there are still high numbers of patients with HF who are undiagnosed and untreated, there is a need for improving efforts to better identify HF in patients with DM with or without MASLD. This study aims to develop machine learning (ML) models for assessing the risk of the HF occurrence in patients with DM with and without MASLD.

RESEARCH DESIGN AND METHODS

In the Silesia Diabetes-Heart Project (NCT05626413), patients with DM with and without MASLD were analyzed to identify the most important HF risk factors with the use of a ML approach. The multiple logistic regression (MLR) classifier exploiting the most discriminative patient's parameters selected by the χ2 test following the Monte Carlo strategy was implemented. The classification capabilities of the ML models were quantified using sensitivity, specificity, and the percentage of correctly classified (CC) high- and low-risk patients.

RESULTS

We studied 2000 patients with DM (mean age 58.85 ± SD 17.37 years; 48% women). In the feature selection process, we identified 5 parameters: age, type of DM, atrial fibrillation (AF), hyperuricemia and estimated glomerular filtration rate (eGFR). In the case of MASLD( +) patients, the same criterion was met by 3 features: AF, hyperuricemia and eGFR, and for MASLD(-) patients, by 2 features: age and eGFR. Amongst all patients, sensitivity and specificity were 0.81 and 0.70, respectively, with the area under the receiver operating curve (AUC) of 0.84 (95% CI 0.82-0.86).

CONCLUSION

A ML approach demonstrated high performance in identifying HF in patients with DM independently of their MASLD status, as well as both in patients with and without MASLD based on easy-to-obtain patient parameters.

摘要

背景

糖尿病(DM)、心力衰竭(HF)和代谢功能障碍相关脂肪性肝病(MASLD)是日益流行的重叠疾病。由于仍有大量 HF 患者未被诊断和未得到治疗,因此需要加强努力,以便更好地识别患有 DM 伴或不伴 MASLD 的患者中的 HF。本研究旨在开发用于评估 DM 伴和不伴 MASLD 的患者发生 HF 的风险的机器学习(ML)模型。

研究设计和方法

在西里西亚糖尿病-心脏项目(NCT05626413)中,分析了患有 DM 伴和不伴 MASLD 的患者,以使用 ML 方法确定最重要的 HF 危险因素。使用 χ2 检验后采用蒙特卡罗策略选择的最具鉴别力的患者参数的多逻辑回归(MLR)分类器来实现。使用灵敏度、特异性和高风险和低风险患者的正确分类百分比(CC)来量化 ML 模型的分类能力。

结果

我们研究了 2000 名 DM 患者(平均年龄 58.85±17.37 岁;48%为女性)。在特征选择过程中,我们确定了 5 个参数:年龄、DM 类型、心房颤动(AF)、高尿酸血症和估算肾小球滤过率(eGFR)。对于 MASLD(+)患者,符合相同标准的有 3 个特征:AF、高尿酸血症和 eGFR,对于 MASLD(-)患者,符合相同标准的有 2 个特征:年龄和 eGFR。在所有患者中,灵敏度和特异性分别为 0.81 和 0.70,接收者操作特征曲线(AUC)下面积为 0.84(95%CI 0.82-0.86)。

结论

ML 方法在识别 DM 患者的 HF 方面表现出较高的性能,无论其 MASLD 状态如何,以及无论患者是否存在 MASLD,基于易于获得的患者参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验