Suppr超能文献

一种使用扩散模型和强化学习来生成具有所需特性的多靶点化合物的3D生成框架。

A 3D generation framework using diffusion model and reinforcement learning to generate multi-target compounds with desired properties.

作者信息

Yuan Yongna, Pan Xiaohang, Li Xiaohong, Zhang Ruisheng, Su Wei

机构信息

School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China.

出版信息

J Cheminform. 2025 Jun 4;17(1):93. doi: 10.1186/s13321-025-01035-y.

Abstract

Deep generative models provide a powerful solution for the de novo design of molecules. However, the majority of existing methods only generate molecules for a single target. Generating molecules with biological activities against multiple specific targets and desired properties remains an extremely difficult challenge. In this study, we propose a novel 3D molecule generation framework based on reinforcement learning and diffusion model to generate molecules with predefined properties for given multiple targets. The proposed framework, MDRL, uses a diffusion model to understand the 3D chemical structure of molecules and employs Kolmogorov-Arnold Networks instead of Multilayer Perceptron to enhance model performance. Through reinforcement learning, the framework is able to generate molecules that simultaneously target two targets and further optimizes multiple molecular properties. Experimental results show that our model exhibits comparable performance to various state-of-the-art molecular generation models, and MDRL can effectively navigate chemical space to design polypharmacological compounds and control multiple molecular properties. In multiple case studies, we verify that the generated molecules can simultaneously target two targets through molecular docking and assess the model's ability to control multiple molecular properties. The results in this study highlight the advantages and practicalities of our model in generating polypharmacological compounds with desired properties.

摘要

深度生成模型为分子的从头设计提供了一个强大的解决方案。然而,现有的大多数方法仅针对单一目标生成分子。生成具有针对多个特定目标的生物活性以及所需性质的分子仍然是一个极其困难的挑战。在本研究中,我们提出了一种基于强化学习和扩散模型的新型3D分子生成框架,用于为给定的多个目标生成具有预定义性质的分子。所提出的框架MDRL使用扩散模型来理解分子的3D化学结构,并采用柯尔莫哥洛夫 - 阿诺德网络而非多层感知器来提高模型性能。通过强化学习,该框架能够生成同时针对两个目标且进一步优化多种分子性质的分子。实验结果表明,我们的模型表现出与各种最先进的分子生成模型相当的性能,并且MDRL能够有效地在化学空间中导航以设计多靶点化合物并控制多种分子性质。在多个案例研究中,我们通过分子对接验证了生成的分子能够同时针对两个目标,并评估了模型控制多种分子性质的能力。本研究的结果突出了我们的模型在生成具有所需性质的多靶点化合物方面的优势和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f78/12135559/4a3639205b41/13321_2025_1035_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验