Müller Dominik, Voran Jakob Christoph, Macedo Mário, Hartmann Dennis, Lind Charlotte, Frank Derk, Schreiweis Björn, Kramer Frank, Ulrich Hannes
IT-Infrastructure for Translational Medical Research, University of Augsburg, 86159 Augsburg, Germany.
Institute for Digital Medicine, University Hospital Augsburg, 86156 Augsburg, Germany.
Diagnostics (Basel). 2024 Dec 8;14(23):2760. doi: 10.3390/diagnostics14232760.
The integration of machine learning into the domain of radiomics has revolutionized the approach to personalized medicine, particularly in oncology. Our research presents RadTA (RADiomics Trend Analysis), a novel framework developed to facilitate the automatic analysis of quantitative imaging biomarkers (QIBs) from time-series CT volumes. RadTA is designed to bridge a technical gap for medical experts and enable sophisticated radiomic analyses without deep learning expertise. The core of RadTA includes an automated command line interface, streamlined image segmentation, comprehensive feature extraction, and robust evaluation mechanisms. RadTA utilizes advanced segmentation models, specifically TotalSegmentator and Body Composition Analysis (BCA), to accurately delineate anatomical structures from CT scans. These models enable the extraction of a wide variety of radiomic features, which are subsequently processed and compared to assess health dynamics across timely corresponding CT series. The effectiveness of RadTA was tested using the HNSCC-3DCT-RT dataset, which includes CT scans from oncological patients undergoing radiation therapy. The results demonstrate significant changes in tissue composition and provide insights into the physical effects of the treatment. RadTA demonstrates a step of clinical adoption in the field of radiomics, offering a user-friendly, robust, and effective tool for the analysis of patient health dynamics. It can potentially also be used for other medical specialties.
将机器学习整合到放射组学领域,彻底改变了个性化医疗的方法,尤其是在肿瘤学方面。我们的研究提出了RadTA(放射组学趋势分析),这是一个新开发的框架,用于促进从时间序列CT体积中自动分析定量成像生物标志物(QIBs)。RadTA旨在弥合医学专家的技术差距,使在没有深度学习专业知识的情况下也能进行复杂的放射组学分析。RadTA的核心包括一个自动化命令行界面、简化的图像分割、全面的特征提取和强大的评估机制。RadTA利用先进的分割模型,特别是TotalSegmentator和身体成分分析(BCA),从CT扫描中准确描绘解剖结构。这些模型能够提取各种各样的放射组学特征,随后对这些特征进行处理和比较,以评估跨时间对应CT系列的健康动态。使用HNSCC-3DCT-RT数据集对RadTA的有效性进行了测试,该数据集包括接受放射治疗的肿瘤患者的CT扫描。结果显示组织成分有显著变化,并提供了对治疗物理效果的见解。RadTA展示了放射组学领域在临床应用方面向前迈进了一步,为分析患者健康动态提供了一个用户友好、强大且有效的工具。它也有可能用于其他医学专业。