Wang Jie, Gong Rui, Yang Ming, Wu Xi, Li Ziwei, Huang Haibing, Yan Xiyun, Wang Daji
Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Front Chem. 2024 Aug 28;12:1439039. doi: 10.3389/fchem.2024.1439039. eCollection 2024.
() infection is a primary cause of otitis media (OM), the most common disease for which children are prescribed antibiotics. However, the abuse of antibiotics has led to a global increase in antimicrobial resistance (AMR). Nanozymes, as promising alternatives to traditional antibiotics, are being extensively utilized to combat AMR. Here, we synthesize a series of single-atom nanozymes (metal-CN SANzymes) by loading four metals (Ag, Fe, Cu, Ru) with antibacterial properties onto a crystalline g-CN. These metal-CN display a rob-like morphology and well-dispersed metal atoms. Among them, Ru-CN demonstrates the optimal peroxidase-like activity (285.3 U mg), comparable to that of horseradish peroxidase (267.7 U mg). antibacterial assays reveal that Ru-CN significantly inhibits growth compared with other metal-CN even at a low concentration (0.06 mg mL). Notably, Ru-CN acts as a narrow-spectrum nanoantibiotic with relative specificity against Gram-positive bacteria. Biofilms formed by are easily degraded by Ru-CN due to its high peroxidase-like activity. , Ru-CN effectively eliminates and relieves ear inflammation in OM mouse models. However, untreated OM mice eventually develop hearing impairment. Due to its low metal load, Ru-CN does not exhibit significant toxicity to blood, liver, or kidney. In conclusion, this study presents a novel SANzyme-based antibiotic that can effectively eliminate and treat -induced OM.
()感染是中耳炎(OM)的主要病因,中耳炎是儿童最常被开具抗生素处方的疾病。然而,抗生素的滥用导致全球抗菌药物耐药性(AMR)增加。纳米酶作为传统抗生素的有前景的替代品,正被广泛用于对抗AMR。在此,我们通过将四种具有抗菌特性的金属(Ag、Fe、Cu、Ru)负载到结晶性g-CN上,合成了一系列单原子纳米酶(金属-CN单原子纳米酶)。这些金属-CN呈现出棒状形态且金属原子分散良好。其中,Ru-CN表现出最佳的类过氧化物酶活性(285.3 U mg),与辣根过氧化物酶(267.7 U mg)相当。抗菌试验表明,即使在低浓度(0.06 mg mL)下,Ru-CN与其他金属-CN相比也能显著抑制生长。值得注意的是,Ru-CN作为一种窄谱纳米抗生素,对革兰氏阳性菌具有相对特异性。由形成的生物膜由于其高类过氧化物酶活性而容易被Ru-CN降解。此外,Ru-CN在OM小鼠模型中能有效消除并减轻耳部炎症。然而,未经治疗的OM小鼠最终会出现听力障碍。由于其低金属负载量,Ru-CN对血液、肝脏或肾脏没有表现出明显的毒性。总之,本研究提出了一种新型的基于单原子纳米酶的抗生素,它可以有效消除并治疗诱导的OM。
ACS Appl Bio Mater. 2023-3-20
Biomater Sci. 2023-12-19
Clin Otolaryngol. 2023-9