Suppr超能文献

多任务学习中深度神经网络的多适应性优化。

Multi-Adaptive Optimization for multi-task learning with deep neural networks.

机构信息

Centro de Investigación CITIC, Universidade da Coruña, A Coruña, Spain; VARPA Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain.

Centro de Investigación CITIC, Universidade da Coruña, A Coruña, Spain; VARPA Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain.

出版信息

Neural Netw. 2024 Feb;170:254-265. doi: 10.1016/j.neunet.2023.11.038. Epub 2023 Nov 19.

Abstract

Multi-task learning is a promising paradigm to leverage task interrelations during the training of deep neural networks. A key challenge in the training of multi-task networks is to adequately balance the complementary supervisory signals of multiple tasks. In that regard, although several task-balancing approaches have been proposed, they are usually limited by the use of per-task weighting schemes and do not completely address the uneven contribution of the different tasks to the network training. In contrast to classical approaches, we propose a novel Multi-Adaptive Optimization (MAO) strategy that dynamically adjusts the contribution of each task to the training of each individual parameter in the network. This automatically produces a balanced learning across tasks and across parameters, throughout the whole training and for any number of tasks. To validate our proposal, we perform comparative experiments on real-world datasets for computer vision, considering different experimental settings. These experiments allow us to analyze the performance obtained in several multi-task scenarios along with the learning balance across tasks, network layers and training steps. The results demonstrate that MAO outperforms previous task-balancing alternatives. Additionally, the performed analyses provide insights that allow us to comprehend the advantages of this novel approach for multi-task learning.

摘要

多任务学习是一种很有前途的范例,可以在深度神经网络的训练过程中利用任务之间的关系。在多任务网络的训练中,一个关键的挑战是如何充分平衡多个任务的互补监督信号。在这方面,尽管已经提出了几种任务平衡方法,但它们通常受到每个任务的加权方案的限制,并且不能完全解决不同任务对网络训练的贡献不均衡的问题。与传统方法不同,我们提出了一种新的多自适应优化(MAO)策略,该策略可以动态调整每个任务对网络中每个单独参数训练的贡献。这可以在整个训练过程中为任何数量的任务自动实现跨任务和跨参数的平衡学习。为了验证我们的建议,我们在计算机视觉的真实数据集上进行了比较实验,考虑了不同的实验设置。这些实验使我们能够分析在多个多任务场景中获得的性能,以及跨任务、网络层和训练步骤的学习平衡。结果表明,MAO 优于以前的任务平衡替代方案。此外,所进行的分析提供了一些见解,使我们能够理解这种新的多任务学习方法的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验