Feng Zhifu, Giubertoni Damiano, Cian Alessandro, Valt Matteo, Barozzi Mario, Gaiardo Andrea, Guidi Vincenzo
Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
Micro-Nano Characterization and Fabrication Facility Unit, Sensors and Devices Center, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy.
Micromachines (Basel). 2023 Nov 4;14(11):2060. doi: 10.3390/mi14112060.
Metal oxide semiconductor (MOS) gas sensors are widely used for gas detection. Typically, the hotplate element is the key component in MOS gas sensors which provide a proper and tunable operation temperature. However, the low power efficiency of the standard hotplates greatly limits the portable application of MOS gas sensors. The miniaturization of the hotplate geometry is one of the most effective methods used to reduce its power consumption. In this work, a new method is presented, combining electron beam lithography (EBL) and focused ion beam (FIB) technologies to obtain low power consumption. EBL is used to define the low-resolution section of the electrode, and FIB technology is utilized to pattern the high-resolution part. Different Au ion fluences in FIBs are tested in different milling strategies. The resulting devices are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and secondary ion mass spectrometry (SIMS). Furthermore, the electrical resistance of the hotplate is measured at different voltages, and the operational temperature is calculated based on the Pt temperature coefficient of resistance value. In addition, the thermal heater and electrical stability is studied at different temperatures for 110 h. Finally, the implementation of the fabricated hotplate in ZnO gas sensors is investigated using ethanol at 250 °C.
金属氧化物半导体(MOS)气体传感器被广泛用于气体检测。通常,热板元件是MOS气体传感器中的关键部件,它能提供合适且可调节的工作温度。然而,标准热板的低功率效率极大地限制了MOS气体传感器的便携式应用。热板几何形状的小型化是降低其功耗的最有效方法之一。在这项工作中,提出了一种结合电子束光刻(EBL)和聚焦离子束(FIB)技术以实现低功耗的新方法。EBL用于定义电极的低分辨率部分,而FIB技术则用于制作高分辨率部分。在不同的铣削策略中测试了FIB中不同的金离子注量。通过扫描电子显微镜(SEM)、原子力显微镜(AFM)和二次离子质谱(SIMS)对所得器件进行表征。此外,在不同电压下测量热板的电阻,并根据铂的电阻温度系数值计算工作温度。另外,在不同温度下对热加热器和电稳定性进行了110小时的研究。最后,在250°C下使用乙醇研究了在ZnO气体传感器中制造的热板的应用情况。