Suppr超能文献

对一种土壤细菌的电子传递链进行基因剖析,揭示了生物吩嗪-1-羧酸氧化的一种可推广机制。

Genetically dissecting the electron transport chain of a soil bacterium reveals a generalizable mechanism for biological phenazine-1-carboxylic acid oxidation.

作者信息

Tsypin Lev M Z, Saunders Scott H, Chen Allen W, Newman Dianne K

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.

Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

出版信息

bioRxiv. 2023 Nov 14:2023.11.14.567096. doi: 10.1101/2023.11.14.567096.

Abstract

The capacity for bacterial extracellular electron transfer via secreted metabolites is widespread in natural, clinical, and industrial environments. Recently, we discovered biological oxidation of phenazine-1-carboxylic acid (PCA), the first example of biological regeneration of a naturally produced extracellular electron shuttle. However, it remained unclear how PCA oxidation was catalyzed. Here, we report the mechanism, which we uncovered by genetically perturbing the branched electron transport chain (ETC) of the soil isolate MBL. Biological PCA oxidation is coupled to anaerobic respiration with nitrate, fumarate, dimethyl sulfoxide, or trimethylamine-N-oxide as terminal electron acceptors. Genetically inactivating the catalytic subunits for all redundant complexes for a given terminal electron acceptor abolishes PCA oxidation. In the absence of quinones, PCA can still donate electrons to certain terminal reductases, albeit much less efficiently. In MBL, PCA oxidation is largely driven by flux through the ETC, which suggests a generalizable mechanism that may be employed by any anaerobically respiring bacterium with an accessible cytoplasmic membrane. This model is supported by analogous genetic experiments during nitrate respiration by .

摘要

细菌通过分泌代谢物进行细胞外电子转移的能力在自然、临床和工业环境中广泛存在。最近,我们发现了吩嗪-1-羧酸(PCA)的生物氧化,这是天然产生的细胞外电子穿梭体生物再生的首个例子。然而,PCA氧化是如何被催化的仍不清楚。在此,我们报告了通过对土壤分离株MBL的分支电子传递链(ETC)进行基因干扰而发现的机制。生物PCA氧化与以硝酸盐、富马酸盐、二甲基亚砜或三甲胺-N-氧化物作为末端电子受体的厌氧呼吸相偶联。对于给定的末端电子受体,对所有冗余复合物的催化亚基进行基因失活会消除PCA氧化。在没有醌的情况下,PCA仍然可以将电子传递给某些末端还原酶,尽管效率要低得多。在MBL中,PCA氧化在很大程度上由通过ETC的通量驱动,这表明一种可推广的机制可能被任何具有可及细胞质膜的厌氧呼吸细菌所采用。该模型得到了在[具体细菌名称]进行硝酸盐呼吸期间类似基因实验的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb8d/10680695/dac1f02b546b/nihpp-2023.11.14.567096v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验