National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.
Front Immunol. 2023 Nov 20;14:1286203. doi: 10.3389/fimmu.2023.1286203. eCollection 2023.
Thrombocytopenia is a known prognostic factor in sepsis, yet the relationship between platelet-related genes and sepsis outcomes remains elusive. We developed a machine learning (ML) model based on platelet-related genes to predict poor prognosis in sepsis. The model underwent rigorous evaluation on six diverse platforms, ensuring reliable and versatile findings.
A retrospective analysis of platelet data from 365 sepsis patients confirmed the predictive role of platelet count in prognosis. We employed COX analysis, Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine (SVM) techniques to identify platelet-related genes from the GSE65682 dataset. Subsequently, these genes were trained and validated on six distinct platforms comprising 719 patients, and compared against the Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ-Failure Assessment (SOFA) score.
A PLT count <100×10/L independently increased the risk of death in sepsis patients (OR = 2.523; 95% CI: 1.084-5.872). The ML model, based on five platelet-related genes, demonstrated impressive area under the curve (AUC) values ranging from 0.5 to 0.795 across various validation platforms. On the GPL6947 platform, our ML model outperformed the APACHE II score with an AUC of 0.795 compared to 0.761. Additionally, by incorporating age, the model's performance was further improved to an AUC of 0.812. On the GPL4133 platform, the initial AUC of the machine learning model based on five platelet-related genes was 0.5. However, after including age, the AUC increased to 0.583. In comparison, the AUC of the APACHE II score was 0.604, and the AUC of the SOFA score was 0.542.
Our findings highlight the broad applicability of this ML model, based on platelet-related genes, in facilitating early treatment decisions for sepsis patients with poor outcomes. Our study paves the way for advancements in personalized medicine and improved patient care.
血小板减少症是脓毒症的已知预后因素,但血小板相关基因与脓毒症结局之间的关系仍不清楚。我们开发了一种基于血小板相关基因的机器学习(ML)模型,以预测脓毒症的不良预后。该模型在六个不同的平台上进行了严格的评估,确保了可靠和通用的发现。
对 365 例脓毒症患者的血小板数据进行回顾性分析,证实血小板计数对预后有预测作用。我们采用 COX 分析、最小绝对值收缩和选择算子(LASSO)和支持向量机(SVM)技术,从 GSE65682 数据集中识别血小板相关基因。随后,我们在包含 719 例患者的六个不同平台上对这些基因进行了训练和验证,并与急性生理学和慢性健康评估 II(APACHE II)和序贯器官衰竭评估(SOFA)评分进行了比较。
PLT 计数<100×10/L 可独立增加脓毒症患者死亡的风险(OR=2.523;95%CI:1.084-5.872)。基于五个血小板相关基因的 ML 模型在不同的验证平台上显示出令人印象深刻的曲线下面积(AUC)值,范围为 0.5 至 0.795。在 GPL6947 平台上,我们的 ML 模型的 AUC 为 0.795,优于 APACHE II 评分的 0.761。此外,通过纳入年龄,模型的性能进一步提高到 AUC 为 0.812。在 GPL4133 平台上,基于五个血小板相关基因的机器学习模型的初始 AUC 为 0.5。然而,在纳入年龄后,AUC 增加到 0.583。相比之下,APACHE II 评分的 AUC 为 0.604,SOFA 评分的 AUC 为 0.542。
我们的研究结果强调了基于血小板相关基因的这种 ML 模型在为预后不良的脓毒症患者提供早期治疗决策方面的广泛适用性。我们的研究为个性化医学和改善患者护理的进步铺平了道路。