Suppr超能文献

用于减少氢燃料电池中交叉现象的原子级薄质子传导膜的比较研究。

Comparative Studies of Atomically Thin Proton Conductive Films to Reduce Crossover in Hydrogen Fuel Cells.

作者信息

Kutagulla Shanmukh, Le Nam Hoang, Caldino Bohn Isabel Terry, Stacy Benjamin J, Favela Christopher S, Slack John J, Baker Andrew M, Kim Hyeongjoon, Shin Hyeon Suk, Korgel Brian A, Akinwande Deji

机构信息

Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States.

Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78758, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Dec 27;15(51):59358-59369. doi: 10.1021/acsami.3c12650. Epub 2023 Dec 16.

Abstract

Hydrogen fuel cells based on proton exchange membrane fuel cell (PEMFC) technology are promising as a source of clean energy to power a decarbonized future. However, PEMFCs are limited by a number of major inefficiencies; one of the most significant is hydrogen crossover. In this work, we comprehensively study the effects of two-dimensional (2D) materials applied to the anode side of the membrane as H barrier coatings on Nafion to reduce crossover effects on hydrogen fuel cells, while studying adverse effects on conductivity and catalyst performance in the beginning of life testing. The barrier layers studied include graphene, hexagonal boron nitride (hBN), amorphous boron nitride (aBN), and varying thicknesses of molybdenum disulfide (MoS), all chosen due to their expected stability in a fuel cell environment. Crossover mitigation in the materials studied ranges from 4.4% (1 nm MoS) to 46.1% (graphene) as compared to Nafion 211. Effects on proton conductivity are also studied, suggesting high areal proton transport in materials previously thought to be effectively nonconductive, such as 2 nm MoS and amorphous boron nitride under the conditions studied. The results indicate that a number of 2D materials are able to improve crossover effects, with those coated with 8 nm MoS and 1 L graphene able to achieve greater crossover reduction while minimizing conductivity penalty.

摘要

基于质子交换膜燃料电池(PEMFC)技术的氢燃料电池有望成为为脱碳未来提供动力的清洁能源来源。然而,PEMFC受到许多主要低效率因素的限制;其中最显著的一个是氢渗透。在这项工作中,我们全面研究了应用于膜阳极侧的二维(2D)材料作为Nafion氢阻隔涂层对氢燃料电池中氢渗透影响的作用,同时在寿命测试开始时研究其对导电性和催化剂性能的不利影响。所研究的阻隔层包括石墨烯、六方氮化硼(hBN)、非晶态氮化硼(aBN)以及不同厚度的二硫化钼(MoS),选择这些材料均是由于它们在燃料电池环境中预期具有的稳定性。与Nafion 211相比,所研究材料中的氢渗透缓解率在4.4%(1 nm MoS)至46.1%(石墨烯)之间。还研究了对质子传导率的影响,结果表明在研究条件下,以前被认为基本不导电的材料,如2 nm MoS和非晶态氮化硼,也具有较高的面质子传输率。结果表明,多种二维材料能够改善氢渗透效应,其中涂覆8 nm MoS和1 L石墨烯的材料能够在最大程度降低氢渗透的同时,将对导电性的影响降至最低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验