Suppr超能文献

用于将原子级薄的二维材料与质子交换聚合物进行可扩展集成以用于下一代质子交换膜的超薄质子传导载体层。

Ultra-thin proton conducting carrier layers for scalable integration of atomically thin 2D materials with proton exchange polymers for next-generation PEMs.

作者信息

Moehring Nicole K, Naclerio Andrew E, Chaturvedi Pavan, Knight Thomas, Kidambi Piran R

机构信息

Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA.

Chemical and Biomolecular Engineering Department, Vanderbilt University, Nashville, TN 37212, USA.

出版信息

Nanoscale. 2024 Apr 4;16(14):6973-6983. doi: 10.1039/d3nr05202h.

Abstract

Scalable approaches for synthesis and integration of proton selective atomically thin 2D materials with proton conducting polymers can enable next-generation proton exchange membranes (PEMs) with minimal crossover of reactants or undesired species while maintaining adequately high proton conductance for practical applications. Here, we systematically investigate facile and scalable approaches to interface monolayer graphene synthesized scalable chemical vapor deposition (CVD) on Cu foil with the most widely used proton exchange polymer Nafion 211 (N211, ∼25 μm thick film) (i) spin-coating a ∼700 nm thin Nafion carrier layer to transfer graphene (spin + scoop), (ii) casting a Nafion film and cold pressing (cold press), and (iii) hot pressing (hot press) while minimizing micron-scale defects to <0.3% area. Interfacing CVD graphene on Cu with N211 cold press or hot press and subsequent removal of Cu etching results in ∼50% lower areal proton conductance compared to membranes fabricated the spin + scoop method. Notably, the areal proton conductance can be recovered by soaking the hot and cold press membranes in 0.1 M HCl, without significant damage to graphene. We rationalize our finding by the significantly smaller reservoir for cation uptake from Cu etching for the ∼700 nm thin carrier Nafion layer used for spin + scoop transfer compared to the ∼25 μm thick N211 film for hot and cold pressing. Finally, we demonstrate performance in H fuel cells with power densities of ∼0.23 W cm and up to ∼41-54% reduction in H crossover for the N211|G|N211 sandwich membranes compared to the control N211|N211 indicating potential for our approach in enabling advanced PEMs for fuel cells, redox-flow batteries, isotope separations and beyond.

摘要

将质子选择性原子级薄二维材料与质子传导聚合物进行合成和整合的可扩展方法,能够实现下一代质子交换膜(PEM),使其反应物或不期望的物质的渗透最小化,同时保持足够高的质子传导率以用于实际应用。在此,我们系统地研究了简便且可扩展的方法,以将在铜箔上通过可扩展化学气相沉积(CVD)合成的单层石墨烯与最广泛使用的质子交换聚合物Nafion 211(N211,约25μm厚的膜)进行界面结合:(i)旋涂约700nm厚的Nafion载体层以转移石墨烯(旋涂+刮取),(ii)浇铸Nafion膜并冷压(冷压),以及(iii)热压(热压),同时将微米级缺陷最小化至<0.3%面积。与通过旋涂+刮取法制备的膜相比,通过冷压或热压将铜上的CVD石墨烯与N211进行界面结合并随后去除铜(蚀刻)会导致面质子传导率降低约50%。值得注意的是,通过将热压和冷压膜浸泡在0.1M HCl中可以恢复面质子传导率,而不会对石墨烯造成显著损害。我们通过以下方式解释我们的发现:与用于热压和冷压的约25μm厚的N211膜相比,用于旋涂+刮取转移的约700nm薄载体Nafion层从铜蚀刻中摄取阳离子的储库明显更小。最后,我们展示了在氢燃料电池中的性能,功率密度约为0.23W/cm²,与对照N211|N211相比,N211|G|N211三明治膜的氢渗透降低了约41 - 54%,表明我们的方法在实现用于燃料电池、氧化还原液流电池、同位素分离等的先进PEM方面具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验