Suppr超能文献

基于来自乳腺 [F]FDG-PET/MRI 的临床数据和影像学数据,应用机器学习预测乳腺癌患者的治疗反应。

Prediction of therapy response of breast cancer patients with machine learning based on clinical data and imaging data derived from breast [F]FDG-PET/MRI.

机构信息

Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, D-40225, Düsseldorf, Germany.

Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany.

出版信息

Eur J Nucl Med Mol Imaging. 2024 Apr;51(5):1451-1461. doi: 10.1007/s00259-023-06513-9. Epub 2023 Dec 22.

Abstract

PURPOSE

To evaluate if a machine learning prediction model based on clinical and easily assessable imaging features derived from baseline breast [F]FDG-PET/MRI staging can predict pathologic complete response (pCR) in patients with newly diagnosed breast cancer prior to neoadjuvant system therapy (NAST).

METHODS

Altogether 143 women with newly diagnosed breast cancer (54 ± 12 years) were retrospectively enrolled. All women underwent a breast [F]FDG-PET/MRI, a histopathological workup of their breast cancer lesions and evaluation of clinical data. Fifty-six features derived from positron emission tomography (PET), magnetic resonance imaging (MRI), sociodemographic / anthropometric, histopathologic as well as clinical data were generated and used as input for an extreme Gradient Boosting model (XGBoost) to predict pCR. The model was evaluated in a five-fold nested-cross-validation incorporating independent hyper-parameter tuning within the inner loops to reduce the risk of overoptimistic estimations. Diagnostic model-performance was assessed by determining the area under the curve of the receiver operating characteristics curve (ROC-AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. Furthermore, feature importances of the XGBoost model were evaluated to assess which features contributed most to distinguish between pCR and non-pCR.

RESULTS

Nested-cross-validation yielded a mean ROC-AUC of 80.4 ± 6.0% for prediction of pCR. Mean sensitivity, specificity, PPV, and NPV of 54.5 ± 21.3%, 83.6 ± 4.2%, 63.6 ± 8.5%, and 77.6 ± 8.1% could be achieved. Histopathological data were the most important features for classification of the XGBoost model followed by PET, MRI, and sociodemographic/anthropometric features.

CONCLUSION

The evaluated multi-source XGBoost model shows promising results for reliably predicting pathological complete response in breast cancer patients prior to NAST. However, yielded performance is yet insufficient to be implemented in the clinical decision-making process.

摘要

目的

评估基于基线乳腺[F]FDG-PET/MRI 分期的临床和易于评估的成像特征的机器学习预测模型是否可以预测新诊断为乳腺癌患者在新辅助系统治疗(NAST)前的病理完全缓解(pCR)。

方法

共纳入 143 名新诊断为乳腺癌的女性(54±12 岁),回顾性纳入。所有女性均接受了乳腺[F]FDG-PET/MRI、乳腺癌病变的组织病理学检查以及临床数据评估。从正电子发射断层扫描(PET)、磁共振成像(MRI)、社会人口统计学/人体测量学、组织病理学以及临床数据中生成了 56 个特征,并将其作为极端梯度提升模型(XGBoost)的输入,以预测 pCR。该模型在五重嵌套交叉验证中进行了评估,在内部循环中独立进行超参数调整,以降低过度乐观估计的风险。通过确定接收器操作特征曲线(ROC-AUC)的曲线下面积、灵敏度、特异性、阳性预测值(PPV)、阴性预测值(NPV)和准确性来评估诊断模型的性能。此外,评估了 XGBoost 模型的特征重要性,以评估哪些特征对区分 pCR 和非 pCR 贡献最大。

结果

嵌套交叉验证得出预测 pCR 的平均 ROC-AUC 为 80.4±6.0%。可实现的平均灵敏度、特异性、PPV 和 NPV 分别为 54.5±21.3%、83.6±4.2%、63.6±8.5%和 77.6±8.1%。组织病理学数据是 XGBoost 模型分类的最重要特征,其次是 PET、MRI 和社会人口统计学/人体测量学特征。

结论

评估的多源 XGBoost 模型在 NAST 前可靠预测乳腺癌患者的病理完全缓解方面显示出有前途的结果。然而,产生的性能还不足以在临床决策过程中实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a36c/10957677/70f16e02faa5/259_2023_6513_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验