文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

活性氧在骨细胞生理和病理生理中的作用。

The role of reactive oxygen species in bone cell physiology and pathophysiology.

作者信息

Marques-Carvalho Adriana, Kim Ha-Neui, Almeida Maria

机构信息

CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal.

Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, USA.

出版信息

Bone Rep. 2023 Feb 24;19:101664. doi: 10.1016/j.bonr.2023.101664. eCollection 2023 Dec.


DOI:10.1016/j.bonr.2023.101664
PMID:38163012
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10757300/
Abstract

Hydrogen peroxide (HO), superoxide anion radical (O•), and other forms of reactive oxygen species (ROS) are produced by the vast majority of mammalian cells and can contribute both to cellular homeostasis and dysfunction. The NADPH oxidases (NOX) enzymes and the mitochondria electron transport chain (ETC) produce most of the cellular ROS. Multiple antioxidant systems prevent the accumulation of excessive amounts of ROS which cause damage to all cellular macromolecules. Many studies have examined the contribution of ROS to different bone cell types and to skeletal physiology and pathophysiology. Here, we discuss the role of HO and O• and their major enzymatic sources in osteoclasts and osteoblasts, the fundamentally different ways via which these cell types utilize mitochondrial derived HO for differentiation and function, and the molecular mechanisms that impact and are altered by ROS in these cells. Particular emphasis is placed on evidence obtained from mouse models describing the contribution of different sources of ROS or antioxidant enzymes to bone resorption and formation. Findings from studies using pharmacological or genetically modified mouse models indicate that an increase in HO and perhaps other ROS contribute to the loss of bone mass with aging and estrogen deficiency, the two most important causes of osteoporosis and increased fracture risk in humans.

摘要

过氧化氢(HO)、超氧阴离子自由基(O•)以及其他形式的活性氧(ROS)由绝大多数哺乳动物细胞产生,它们既可能有助于细胞内稳态,也可能导致细胞功能障碍。烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶(NOX)和线粒体电子传递链(ETC)产生了细胞内大部分的ROS。多种抗氧化系统可防止过量ROS的积累,因为过量的ROS会对所有细胞大分子造成损害。许多研究探讨了ROS对不同骨细胞类型以及骨骼生理和病理生理的作用。在此,我们讨论HO和O•及其主要酶源在破骨细胞和成骨细胞中的作用,这些细胞类型利用线粒体衍生的HO进行分化和发挥功能的根本不同方式,以及ROS在这些细胞中产生影响并被改变的分子机制。特别强调从描述不同ROS来源或抗氧化酶对骨吸收和形成作用的小鼠模型中获得的证据。使用药理学或基因修饰小鼠模型的研究结果表明,HO以及可能的其他ROS增加与衰老和雌激素缺乏导致的骨量流失有关,而衰老和雌激素缺乏是人类骨质疏松症及骨折风险增加的两个最重要原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e035/10757300/23c7f8086196/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e035/10757300/5de4fe7dab39/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e035/10757300/426debc1beaf/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e035/10757300/23c7f8086196/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e035/10757300/5de4fe7dab39/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e035/10757300/426debc1beaf/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e035/10757300/23c7f8086196/gr3.jpg

相似文献

[1]
The role of reactive oxygen species in bone cell physiology and pathophysiology.

Bone Rep. 2023-2-24

[2]
Oxidants in Physiological Processes.

Handb Exp Pharmacol. 2021

[3]
Chemical and Cellular Formation of Reactive Oxygen Species from Secondary Organic Aerosols in Epithelial Lining Fluid.

Res Rep Health Eff Inst. 2023-12

[4]
Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases.

Int J Mol Sci. 2019-7-22

[5]
Reactive oxygen species (ROS) as pleiotropic physiological signalling agents.

Nat Rev Mol Cell Biol. 2020-3-30

[6]
NADPH oxidases in bone homeostasis and osteoporosis.

Free Radic Biol Med. 2018-9-3

[7]
Methods for Detection of NOX-Derived Superoxide Radical Anion and Hydrogen Peroxide in Cells.

Methods Mol Biol. 2019

[8]
Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production.

Free Radic Biol Med. 2008-11-1

[9]
Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.

Aquat Toxicol. 2019-7-25

[10]
ROS Defense Systems and Terminal Oxidases in Bacteria.

Antioxidants (Basel). 2021-5-24

引用本文的文献

[1]
Effects of Lycopene Supplementation on Bone Tissue: A Systematic Review of Clinical and Preclinical Evidence.

Pharmaceuticals (Basel). 2025-8-8

[2]
Isorhynchophylline Mitigates Bone Loss in OVX Mice by Modulating Inflammatory Responses, Oxidative Stress, Gut Microbiota Composition and SCFAs Production.

Food Sci Nutr. 2025-8-25

[3]
Erythrocyte Membrane-Cloaked and Alendronate-Loaded Hollow Prussian Blue Nanoparticles for Synergistic Osteoporosis Therapy via Antioxidant and Targeted Delivery Mechanisms.

ACS Omega. 2025-8-5

[4]
Per- and polyfluorinated substances (PFAS) promote osteoclastogenesis and bone loss through PPARα activation.

Toxicol Rep. 2025-6-20

[5]
Optimizing type H vessels formation short fibers 3D scaffolds with maintaining redox homeostasis for osteoporotic bone remodeling.

Bioact Mater. 2025-7-23

[6]
Advanced therapeutic scaffolds of biomimetic periosteum for functional bone regeneration.

J Nanobiotechnology. 2025-7-26

[7]
Iron and Bone Pathophysiology.

Adv Exp Med Biol. 2025

[8]
var. Enhances Fracture Healing Through Gene Regulation in a Postmenopausal Rat Model.

Pharmaceuticals (Basel). 2025-5-16

[9]
Osteogenic and Antibacterial Response of Levofloxacin-Loaded Mesoporous Nanoparticles Functionalized with -Acetylcysteine.

Pharmaceutics. 2025-4-15

[10]
Pathological and Inflammatory Consequences of Aging.

Biomolecules. 2025-3-12

本文引用的文献

[1]
Nox4 expression in osteo-progenitors controls bone development in mice during early life.

Commun Biol. 2022-6-14

[2]
Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice.

Dis Model Mech. 2022-5-1

[3]
The Role of NRF2 in Bone Metabolism - Friend or Foe?

Front Endocrinol (Lausanne). 2022

[4]
Mitochondrial and metabolic dysfunction in ageing and age-related diseases.

Nat Rev Endocrinol. 2022-4

[5]
Cellular senescence: all roads lead to mitochondria.

FEBS J. 2023-3

[6]
Nox4 Promotes RANKL-Induced Autophagy and Osteoclastogenesis via Activating ROS/PERK/eIF-2α/ATF4 Pathway.

Front Pharmacol. 2021-9-28

[7]
Neutralization of oxidized phospholipids attenuates age-associated bone loss in mice.

Aging Cell. 2021-8

[8]
Mechanical load regulates bone growth via periosteal Osteocrin.

Cell Rep. 2021-7-13

[9]
Treating Neurodegenerative Disease with Antioxidants: Efficacy of the Bioactive Phenol Resveratrol and Mitochondrial-Targeted MitoQ and SkQ.

Antioxidants (Basel). 2021-4-8

[10]
Alterations in glutathione redox homeostasis among adolescents with obesity and anemia.

Sci Rep. 2021-2-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索