文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

壳聚糖/海藻酸钠/CuO-NPs 和壳聚糖/海藻酸钠/FeO-NPs 支架上绵羊胎儿骨髓间充质干细胞向成骨细胞分化的比较。

Comparison of the differentiation of ovine fetal bone-marrow mesenchymal stem cells towards osteocytes on chitosan/alginate/CuO-NPs and chitosan/alginate/FeO-NPs scaffolds.

机构信息

Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, 67144-14971, Iran.

Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.

出版信息

Sci Rep. 2024 Jan 2;14(1):161. doi: 10.1038/s41598-023-50664-6.


DOI:10.1038/s41598-023-50664-6
PMID:38168144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10762099/
Abstract

In the current study, the creation of a chitosan/alginate scaffold hydrogel with and without FeO-NPs or CuO-NPs was studied. From fetal ovine bone marrow mesenchymal stem cells (BM-MSCs) were isolated and cultivated. Their differentiation into osteocyte and adipose cells was investigated. Also, on the scaffolds, cytotoxicity and apoptosis were studied. To investigate the differentiation, treatment groups include: (1) BM-MSCs were plated in DMEM culture medium with high glucose containing 10% FBS and antibiotics (negative control); (2) BM-MSCs were plated in osteogenic differentiation medium (positive control); (3) positive control group + FeO-NPs, (4) positive control group + CuO-NPs; (5) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate scaffold; (6) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/FeO-NPs scaffold; and (7) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/CuO-NPs scaffold. Alkaline phosphatase enzyme concentrations, mineralization rate using a calcium kit, and mineralization measurement by alizarin staining quantification were evaluated after 21 days of culture. In addition, qRT-PCR was used to assess the expression of the ALP, ColA, and Runx2 genes. When compared to other treatment groups, the addition of CuO-NPs in the chitosan/alginate hydrogel significantly increased the expression of the ColA and Runx2 genes (p < 0.05). However, there was no significant difference between the chitosan/alginate hydrogel groups containing FeO-NPs and CuO-NPs in the expression of the ALP gene. It appears that the addition of nanoparticles, in particular CuO-NPs, has made the chitosan/alginate scaffold more effective in supporting osteocyte differentiation.

摘要

在目前的研究中,研究了具有和不具有 FeO-NPs 或 CuO-NPs 的壳聚糖/海藻酸钠支架水凝胶的制备。从胎羊骨髓间充质干细胞(BM-MSCs)中分离并培养。研究了它们向成骨细胞和脂肪细胞的分化。此外,还研究了支架上的细胞毒性和细胞凋亡。为了研究分化,处理组包括:(1)将 BM-MSCs 接种在含 10% FBS 和抗生素的高糖 DMEM 培养基中(阴性对照);(2)将 BM-MSCs 接种在成骨分化培养基中(阳性对照);(3)阳性对照+FeO-NPs;(4)阳性对照+CuO-NPs;(5)将 BM-MSCs 接种在壳聚糖/海藻酸钠支架上的成骨分化培养基中;(6)将 BM-MSCs 接种在壳聚糖/海藻酸钠/FeO-NPs 支架上的成骨分化培养基中;(7)将 BM-MSCs 接种在壳聚糖/海藻酸钠/CuO-NPs 支架上的成骨分化培养基中。培养 21 天后,评估碱性磷酸酶酶浓度、钙试剂盒测量的矿化率以及茜素红染色定量的矿化测量。此外,使用 qRT-PCR 评估 ALP、ColA 和 Runx2 基因的表达。与其他处理组相比,壳聚糖/海藻酸钠水凝胶中添加 CuO-NPs 显著增加了 ColA 和 Runx2 基因的表达(p<0.05)。然而,在壳聚糖/海藻酸钠水凝胶组中,FeO-NPs 和 CuO-NPs 的添加在 ALP 基因的表达方面没有显著差异。似乎纳米粒子的添加,特别是 CuO-NPs 的添加,使壳聚糖/海藻酸钠支架更有效地支持成骨细胞分化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/ca84d74d9eb4/41598_2023_50664_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/91832aaf984c/41598_2023_50664_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/c0561578f906/41598_2023_50664_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/7e9cd817c3fa/41598_2023_50664_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/684a4bd8e376/41598_2023_50664_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/615e57e374e3/41598_2023_50664_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/8eb6c45a8e37/41598_2023_50664_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/852b7206c10c/41598_2023_50664_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/9f602782c43d/41598_2023_50664_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/f191968074eb/41598_2023_50664_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/b2c93ba962f7/41598_2023_50664_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/f522c8ae95db/41598_2023_50664_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/dd795956b21f/41598_2023_50664_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/9eddf4eddaa0/41598_2023_50664_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/d4e68b975860/41598_2023_50664_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/fc63af01256a/41598_2023_50664_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/a55924e48c5f/41598_2023_50664_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/c1f979223b72/41598_2023_50664_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/ca84d74d9eb4/41598_2023_50664_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/91832aaf984c/41598_2023_50664_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/c0561578f906/41598_2023_50664_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/7e9cd817c3fa/41598_2023_50664_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/684a4bd8e376/41598_2023_50664_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/615e57e374e3/41598_2023_50664_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/8eb6c45a8e37/41598_2023_50664_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/852b7206c10c/41598_2023_50664_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/9f602782c43d/41598_2023_50664_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/f191968074eb/41598_2023_50664_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/b2c93ba962f7/41598_2023_50664_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/f522c8ae95db/41598_2023_50664_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/dd795956b21f/41598_2023_50664_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/9eddf4eddaa0/41598_2023_50664_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/d4e68b975860/41598_2023_50664_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/fc63af01256a/41598_2023_50664_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/a55924e48c5f/41598_2023_50664_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/c1f979223b72/41598_2023_50664_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10762099/ca84d74d9eb4/41598_2023_50664_Fig18_HTML.jpg

相似文献

[1]
Comparison of the differentiation of ovine fetal bone-marrow mesenchymal stem cells towards osteocytes on chitosan/alginate/CuO-NPs and chitosan/alginate/FeO-NPs scaffolds.

Sci Rep. 2024-1-2

[2]
Chitosan/alginate scaffold enhanced with Berberis vulgaris extract for osteocyte differentiation of ovine fetal stem cells.

Cell Biochem Funct. 2024-1

[3]
Author Correction: Comparison of the differentiation of ovine fetal bone-marrow mesenchymal stem cells towards osteocytes on chitosan/alginate/CuO-NPs and chitosan/alginate/FeO-NPs scaffolds.

Sci Rep. 2024-4-16

[4]
[In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2013-12

[5]
Effect of Nano-HA/Collagen Composite Hydrogels on Osteogenic Behavior of Mesenchymal Stromal Cells.

Stem Cell Rev Rep. 2016-6

[6]
Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels.

J Biomed Mater Res A. 2017-7-14

[7]
Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.

Mater Sci Eng C Mater Biol Appl. 2016-12-1

[8]
Osteogenic Potential of Sheep Mesenchymal Stem Cells Preconditioned with BMP-2 and FGF-2 and Seeded on an nHAP-Coated PCL/HAP/β-TCP Scaffold.

Cells. 2022-10-31

[9]
Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

PLoS One. 2015-3-13

[10]
Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.

Tissue Eng Regen Med. 2019-1-29

引用本文的文献

[1]
Tailoring innovative silver nanoparticles for modern medicine: The importance of size and shape control and functional modifications.

Mater Today Bio. 2025-7-9

[2]
Bioengineering approaches to trained immunity: Physiologic targets and therapeutic strategies.

Elife. 2025-7-23

[3]
Current Utilization of Gel-Based Scaffolds and Templates in Foot and Ankle Surgery-A Review.

Gels. 2025-4-24

[4]
How the combination of alginate and chitosan can fabricate a hydrogel with favorable properties for wound healing.

Heliyon. 2024-6-3

本文引用的文献

[1]
Adipose-Derived Mesenchymal Stem Cells Differentiation Toward Cardiomyocyte-Like Cells on the PCL/PANI Nanofibrous Scaffold: An Experimental Study.

Iran J Biotechnol. 2022-10-1

[2]
Polycaprolactone-co-polylactic acid nanofiber scaffold in combination with 5-azacytidine and transforming growth factor-β to induce cardiomyocyte differentiation of adipose-derived mesenchymal stem cells.

Cell Biochem Funct. 2022-10

[3]
Preparation and Properties of Iron Nanoparticle-Based Macroporous Scaffolds for Biodegradable Implants.

Materials (Basel). 2022-7-14

[4]
Carboxymethyl chitosan-alginate enhances bone repair effects of magnesium phosphate bone cement by activating the FAK-Wnt pathway.

Bioact Mater. 2022-7-1

[5]
Fabrication, characterization, and optimization of a novel copper-incorporated chitosan/gelatin-based scaffold for bone tissue engineering applications.

Bioimpacts. 2022

[6]
Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer.

Carbohydr Polym. 2022-8-15

[7]
Synergistic sorption performance of karaya gum crosslink poly(acrylamide-co-acrylonitrile) @ metal nanoparticle for organic pollutants.

Int J Biol Macromol. 2022-6-15

[8]
Copper as Dietary Supplement for Bone Metabolism: A Review.

Nutrients. 2021-6-29

[9]
Nanotechnology in Bladder Cancer: Diagnosis and Treatment.

Cancers (Basel). 2021-5-5

[10]
Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing.

Carbohydr Polym. 2021-8-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索