The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
Department of Gynecology, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, 030013, China.
Adv Healthc Mater. 2024 Apr;13(10):e2304207. doi: 10.1002/adhm.202304207. Epub 2024 Jan 14.
Myocardial infarction (MI) results in cardiomyocyte necrosis and conductive system damage, leading to sudden cardiac death and heart failure. Studies have shown that conductive biomaterials can restore cardiac conduction, but cannot facilitate tissue regeneration. This study aims to add regenerative capabilities to the conductive biomaterial by incorporating human endometrial mesenchymal stem cell (hEMSC)-derived exosomes (hEMSC-Exo) into poly-pyrrole-chitosan (PPY-CHI), to yield an injectable hydrogel that can effectively treat MI. In vitro, PPY-CHI/hEMSC-Exo, compared to untreated controls, PPY-CHI, or hEMSC-Exo alone, alleviates HO-induced apoptosis and promotes tubule formation, while in vivo, PPY-CHI/hEMSC-Exo improves post-MI cardiac functioning, along with counteracting against ventricular remodeling and fibrosis. All these activities are facilitated via increased epidermal growth factor (EGF)/phosphoinositide 3-kinase (PI3K)/AKT signaling. Furthermore, the conductive properties of PPY-CHI/hEMSC-Exo are able to resynchronize cardiac electrical transmission to alleviate arrythmia. Overall, PPY-CHI/hEMSC-Exo synergistically combines the cardiac regenerative capabilities of hEMSC-Exo with the conductive properties of PPY-CHI to improve cardiac functioning, via promoting angiogenesis and inhibiting apoptosis, as well as resynchronizing electrical conduction, to ultimately enable more effective MI treatment. Therefore, incorporating exosomes into a conductive hydrogel provides dual benefits in terms of maintaining conductivity, along with facilitating long-term exosome release and sustained application of their beneficial effects.
心肌梗死(MI)导致心肌细胞坏死和传导系统损伤,导致心脏性猝死和心力衰竭。研究表明,传导性生物材料可以恢复心脏传导,但不能促进组织再生。本研究旨在通过将人子宫内膜间充质干细胞(hEMSC)衍生的外泌体(hEMSC-Exo)纳入聚吡咯-壳聚糖(PPY-CHI)中,为导电生物材料添加再生能力,生成一种可有效治疗 MI 的可注射水凝胶。体外实验结果表明,与未处理对照组、PPY-CHI 或 hEMSC-Exo 单独处理相比,PPY-CHI/hEMSC-Exo 减轻了 HO 诱导的细胞凋亡并促进了管腔形成,而在体内,PPY-CHI/hEMSC-Exo 改善了 MI 后的心脏功能,同时对抗心室重构和纤维化。所有这些活动都是通过增加表皮生长因子(EGF)/磷酸肌醇 3-激酶(PI3K)/AKT 信号通路来促进的。此外,PPY-CHI/hEMSC-Exo 的导电性能能够使心脏电传输重新同步,从而缓解心律失常。总体而言,PPY-CHI/hEMSC-Exo 协同结合了 hEMSC-Exo 的心脏再生能力和 PPY-CHI 的导电性能,通过促进血管生成和抑制细胞凋亡以及使电传导重新同步,从而改善心脏功能,最终实现更有效的 MI 治疗。因此,将外泌体纳入导电水凝胶中,在保持导电性的同时,还能促进外泌体的长期释放和持续应用,从而发挥其有益作用。