Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
Cell. 2024 Jan 18;187(2):345-359.e16. doi: 10.1016/j.cell.2023.12.007. Epub 2024 Jan 4.
Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.
细胞在时空上自我组织分子,以产生复杂的行为,但我们缺乏用于工程时空信号的合成策略。我们提出了一种可编程的反应扩散平台,用于使用两种细菌蛋白 MinD 和 MinE(MinDE)在哺乳动物细胞中设计蛋白质振荡、模式和电路。MinDE 电路就像“单细胞收音机”,发射具有频率编码的荧光信号,这些信号可以使用数字信号处理工具进行光谱分离和分析。我们定义了如何使用可工程化的蛋白质-蛋白质相互作用来遗传编程这些信号,并将它们的时空动力学与细胞生物学联系起来。这使我们能够构建灵敏的报告器电路,在频率编码的成像通道上广播内源性细胞信号动力学,并构建控制信号电路,在细胞中合成图案化活动,如蛋白质凝聚体组装和肌动蛋白丝化。我们的工作为可视化、探测和工程化细胞活动建立了一个范例,这些活动对于生物学功能至关重要,涉及长度和时间尺度。