Suppr超能文献

基于加权统计框架的腔面型乳腺癌复杂影像组学特征:一项初步研究

A Complex Radiomic Signature in Luminal Breast Cancer from a Weighted Statistical Framework: A Pilot Study.

作者信息

Castaldo Rossana, Garbino Nunzia, Cavaliere Carlo, Incoronato Mariarosaria, Basso Luca, Cuocolo Renato, Pace Leonardo, Salvatore Marco, Franzese Monica, Nicolai Emanuele

机构信息

IRCCS Synlab SDN, Via E. Gianturco, 113, 80143 Naples, Italy.

Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy.

出版信息

Diagnostics (Basel). 2022 Feb 15;12(2):499. doi: 10.3390/diagnostics12020499.

Abstract

Radiomics is rapidly advancing in precision diagnostics and cancer treatment. However, there are several challenges that need to be addressed before translation to clinical use. This study presents an ad-hoc weighted statistical framework to explore radiomic biomarkers for a better characterization of the radiogenomic phenotypes in breast cancer. Thirty-six female patients with breast cancer were enrolled in this study. Radiomic features were extracted from MRI and PET imaging techniques for malignant and healthy lesions in each patient. To reduce within-subject bias, the ratio of radiomic features extracted from both lesions was calculated for each patient. Radiomic features were further normalized, comparing the z-score, quantile, and whitening normalization methods to reduce between-subjects bias. After feature reduction by Spearman's correlation, a methodological approach based on a principal component analysis (PCA) was applied. The results were compared and validated on twenty-seven patients to investigate the tumor grade, Ki-67 index, and molecular cancer subtypes using classification methods (LogitBoost, random forest, and linear discriminant analysis). The classification techniques achieved high area-under-the-curve values with one PC that was calculated by normalizing the radiomic features via the quantile method. This pilot study helped us to establish a robust framework of analysis to generate a combined radiomic signature, which may lead to more precise breast cancer prognosis.

摘要

放射组学在精准诊断和癌症治疗方面正迅速发展。然而,在转化为临床应用之前,仍有几个挑战需要解决。本研究提出了一个特设加权统计框架,以探索放射组学生物标志物,从而更好地表征乳腺癌的放射基因组表型。本研究纳入了36名患有乳腺癌的女性患者。从MRI和PET成像技术中提取每位患者恶性和健康病变的放射组学特征。为了减少个体内偏差,计算了每位患者从两种病变中提取的放射组学特征的比率。对放射组学特征进行进一步归一化处理,比较z分数、分位数和白化归一化方法以减少个体间偏差。在通过斯皮尔曼相关性进行特征约简后,应用了基于主成分分析(PCA)的方法。使用分类方法(LogitBoost、随机森林和线性判别分析)对27名患者的结果进行比较和验证,以研究肿瘤分级、Ki-67指数和分子癌症亚型。通过分位数方法对放射组学特征进行归一化计算得到的一个主成分,分类技术实现了较高的曲线下面积值。这项初步研究帮助我们建立了一个强大的分析框架,以生成一个综合的放射组学特征,这可能会带来更精确的乳腺癌预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b48/8871349/9bcbccd9d1ee/diagnostics-12-00499-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验