Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.
Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK.
Redox Biol. 2024 Feb;69:103025. doi: 10.1016/j.redox.2024.103025. Epub 2024 Jan 5.
The unfolded protein response (UPR) detects increased misfolded proteins and activates protein refolding, protein degradation and inflammatory responses. UPR sensors in the endoplasmic reticulum, IRE1α and PERK, bind and are activated by proteins with unexpected surface hydrophobicity, whereas sensor ATF6 is activated by proteolytic cleavage when released from complexation with protein disulfide isomerases (PDIs). Metabolic dysfunction leading to the formation of misfolded proteins with surface hydrophobicity and disruption of ATF6-PDI complexes leading to activation of UPR sensors remains unclear. The cellular concentration of reactive dicarbonyl metabolite, methylglyoxal (MG), is increased in impaired metabolic health, producing increased MG-modified cellular proteins. Herein we assessed the effect of high glucose concentration and related increased cellular MG on activation status of IRE1α, PERK and ATF6. Human aortal endothelial cells and HMEC-1 microvascular endothelial cells were incubated in low and high glucose concentration to model blood glucose control, with increase or decrease of MG by silencing or increasing expression of glyoxalase 1 (Glo1), which metabolizes MG. Increased MG induced by high glucose concentration activated IRE1α, PERK and ATF6 and related downstream signalling leading to increased chaperone, apoptotic and inflammatory gene expression. Correction of increased MG by increasing Glo1 expression prevented UPR activation. MG modification of proteins produces surface hydrophobicity through arginine-derived hydroimidazolone MG-H1 formation, with related protein unfolding and preferentially targets PDIs and chaperone pathways for modification. It thereby poses a major challenge to proteostasis and activates UPR sensors. Pharmacological decrease of MG with Glo1 inducer, trans-resveratrol and hesperetin in combination, offers a novel treatment strategy to counter UPR-related cell dysfunction, particularly in hyperglycemia associated with diabetes.
未折叠蛋白反应 (UPR) 可检测到错误折叠的蛋白质增加,并激活蛋白质重折叠、蛋白质降解和炎症反应。内质网中的 UPR 传感器 IRE1α 和 PERK 通过具有意外表面疏水性的蛋白质结合并被激活,而传感器 ATF6 在与蛋白二硫键异构酶 (PDI) 复合物释放时通过蛋白水解切割被激活。导致具有表面疏水性的错误折叠蛋白质形成和 ATF6-PDI 复合物破坏从而导致 UPR 传感器激活的代谢功能障碍仍不清楚。活性二羰基代谢物甲基乙二醛 (MG) 的细胞浓度在代谢健康受损时增加,导致 MG 修饰的细胞蛋白增加。在此,我们评估了高葡萄糖浓度和相关的细胞内 MG 增加对 IRE1α、PERK 和 ATF6 激活状态的影响。将人主动脉内皮细胞和 HMEC-1 微血管内皮细胞在低浓度和高浓度葡萄糖中孵育,以模拟血糖控制,通过沉默或增加糖氧还蛋白 1 (Glo1) 的表达来增加或减少 MG,Glo1 可代谢 MG。高葡萄糖浓度诱导的 MG 激活了 IRE1α、PERK 和 ATF6 及其相关的下游信号通路,导致伴侣蛋白、凋亡和炎症基因表达增加。通过增加 Glo1 表达来纠正增加的 MG 可防止 UPR 激活。MG 通过精氨酸衍生的氢咪唑啉酮 MG-H1 形成对蛋白质进行表面疏水性修饰,导致相关蛋白质展开,并优先修饰 PDI 和伴侣蛋白途径。因此,它对蛋白质稳态构成了重大挑战,并激活了 UPR 传感器。用 Glo1 诱导剂、白藜芦醇和橙皮苷联合进行 MG 的药物降低为对抗与 UPR 相关的细胞功能障碍提供了一种新的治疗策略,特别是在与糖尿病相关的高血糖症中。