Suppr超能文献

空间转录组技术、数据资源及分析方法指南。

A guidebook of spatial transcriptomic technologies, data resources and analysis approaches.

作者信息

Yue Liangchen, Liu Feng, Hu Jiongsong, Yang Pin, Wang Yuxiang, Dong Junguo, Shu Wenjie, Huang Xingxu, Wang Shengqi

机构信息

Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China.

College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China.

出版信息

Comput Struct Biotechnol J. 2023 Jan 16;21:940-955. doi: 10.1016/j.csbj.2023.01.016. eCollection 2023.

Abstract

Advances in transcriptomic technologies have deepened our understanding of the cellular gene expression programs of multicellular organisms and provided a theoretical basis for disease diagnosis and therapy. However, both bulk and single-cell RNA sequencing approaches lose the spatial context of cells within the tissue microenvironment, and the development of spatial transcriptomics has made overall bias-free access to both transcriptional information and spatial information possible. Here, we elaborate development of spatial transcriptomic technologies to help researchers select the best-suited technology for their goals and integrate the vast amounts of data to facilitate data accessibility and availability. Then, we marshal various computational approaches to analyze spatial transcriptomic data for various purposes and describe the spatial multimodal omics and its potential for application in tumor tissue. Finally, we provide a detailed discussion and outlook of the spatial transcriptomic technologies, data resources and analysis approaches to guide current and future research on spatial transcriptomics.

摘要

转录组技术的进步加深了我们对多细胞生物细胞基因表达程序的理解,并为疾病诊断和治疗提供了理论基础。然而,批量和单细胞RNA测序方法都丢失了组织微环境中细胞的空间背景信息,而空间转录组学的发展使得全面、无偏差地获取转录信息和空间信息成为可能。在此,我们详细阐述空间转录组技术的发展,以帮助研究人员根据自身目标选择最合适的技术,并整合大量数据以促进数据的可及性和可用性。然后,我们整理各种计算方法,用于出于各种目的分析空间转录组数据,并描述空间多组学及其在肿瘤组织中的应用潜力。最后,我们对空间转录组技术、数据资源和分析方法进行详细讨论并展望,以指导当前和未来关于空间转录组学的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab2/10781722/d7606d4bbc00/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验