Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA.
Research and Early Development, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ 08543, USA.
Cell Rep Methods. 2022 Nov 15;2(11):100340. doi: 10.1016/j.crmeth.2022.100340. eCollection 2022 Nov 21.
Tumor heterogeneity is a major challenge for oncology drug discovery and development. Understanding of the spatial tumor landscape is key to identifying new targets and impactful model systems. Here, we test the utility of spatial transcriptomics (ST) for oncology discovery by profiling 40 tissue sections and 80,024 capture spots across a diverse set of tissue types, sample formats, and RNA capture chemistries. We verify the accuracy and fidelity of ST by leveraging matched pathology analysis, which provides a ground truth for tissue section composition. We then use spatial data to demonstrate the capture of key tumor depth features, identifying hypoxia, necrosis, vasculature, and extracellular matrix variation. We also leverage spatial context to identify relative cell-type locations showing the anti-correlation of tumor and immune cells in syngeneic cancer models. Lastly, we demonstrate target identification approaches in clinical pancreatic adenocarcinoma samples, highlighting tumor intrinsic biomarkers and paracrine signaling.
肿瘤异质性是肿瘤药物发现和开发的主要挑战。了解空间肿瘤景观对于识别新靶点和有影响力的模型系统至关重要。在这里,我们通过对不同类型的组织类型、样本格式和 RNA 捕获化学物质进行 40 个组织切片和 80024 个捕获点进行分析,测试了空间转录组学(ST)在肿瘤发现中的应用。我们通过利用匹配的病理学分析来验证 ST 的准确性和保真度,这为组织切片组成提供了一个真实的基准。然后,我们使用空间数据来证明关键肿瘤深度特征的捕获,包括缺氧、坏死、血管和细胞外基质的变化。我们还利用空间背景来识别相对细胞类型位置,展示在同基因癌症模型中肿瘤和免疫细胞的反相关。最后,我们在临床胰腺腺癌样本中展示了目标识别方法,突出了肿瘤内在生物标志物和旁分泌信号。