文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种整合磁共振成像放射组学和深度学习特征的融合模型,用于预测异柠檬酸脱氢酶突变型高级别星形细胞瘤中的α地中海贫血X连锁智力障碍突变状态:一项多中心研究。

A fusion model integrating magnetic resonance imaging radiomics and deep learning features for predicting alpha-thalassemia X-linked intellectual disability mutation status in isocitrate dehydrogenase-mutant high-grade astrocytoma: a multicenter study.

作者信息

Liu Zhi, Xu Xinyi, Zhang Wang, Zhang Liqiang, Wen Ming, Gao Jueni, Yang Jun, Kan Yubo, Yang Xing, Wen Zhipeng, Chen Shanxiong, Cao Xu

机构信息

Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Quant Imaging Med Surg. 2024 Jan 3;14(1):251-263. doi: 10.21037/qims-23-807. Epub 2024 Jan 2.


DOI:10.21037/qims-23-807
PMID:38223098
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10784047/
Abstract

BACKGROUND: The mutational status of alpha-thalassemia X-linked intellectual disability () is an important indicator for the treatment and prognosis of high-grade gliomas, but reliable testing currently requires invasive procedures. The objective of this study was to develop a clinical trait-imaging fusion model that combines preoperative magnetic resonance imaging (MRI) radiomics and deep learning (DL) features with clinical variables to predict status in isocitrate dehydrogenase ()-mutant high-grade astrocytoma. METHODS: A total of 234 patients with -mutant high-grade astrocytoma (120 mutant type, 114 wild type) from 3 centers were retrospectively analyzed. Radiomics and DL features from different regions (edema, tumor, and the overall lesion) were extracted to construct multiple imaging models by combining different features in different regions for predicting status. An optimal imaging model was then selected, and its features and linear coefficients were used to calculate an imaging score. Finally, a fusion model was developed by combining the imaging score and clinical variables. The performance and application value of the fusion model were evaluated through the comparison of receiver operating characteristic curves, the construction of a nomogram, calibration curves, decision curves, and clinical application curves. RESULTS: The overall hybrid model constructed with radiomics and DL features from the overall lesion was identified as the optimal imaging model. The fusion model showed the best prediction performance with an area under curve of 0.969 in the training set, 0.956 in the validation set, and 0.949 in the test set as compared to the optimal imaging model (0.966, 0.916, and 0.936, respectively) and clinical model (0.677, 0.641, 0.772, respectively). CONCLUSIONS: The clinical trait-imaging fusion model based on preoperative MRI could effectively predict the mutation status of individuals with -mutant high-grade astrocytoma and has the potential to help patients through the development of a more effective treatment strategy before treatment.

摘要

背景:α-地中海贫血X连锁智力障碍()的突变状态是高级别胶质瘤治疗和预后的重要指标,但目前可靠的检测需要侵入性操作。本研究的目的是开发一种临床特征-影像融合模型,该模型将术前磁共振成像(MRI)的影像组学和深度学习(DL)特征与临床变量相结合,以预测异柠檬酸脱氢酶()突变型高级别星形细胞瘤中的状态。 方法:回顾性分析来自3个中心的234例突变型高级别星形细胞瘤患者(120例突变型,114例野生型)。提取不同区域(水肿、肿瘤和整个病变)的影像组学和DL特征,通过组合不同区域的不同特征构建多个影像模型,以预测状态。然后选择最佳影像模型,利用其特征和线性系数计算影像评分。最后,通过将影像评分与临床变量相结合,开发出融合模型。通过比较受试者工作特征曲线、构建列线图、校准曲线、决策曲线和临床应用曲线,评估融合模型的性能和应用价值。 结果:用来自整个病变的影像组学和DL特征构建的总体混合模型被确定为最佳影像模型。与最佳影像模型(分别为0.966、0.916和0.936)和临床模型(分别为0.677、0.641和0.772)相比,融合模型在训练集、验证集和测试集中的曲线下面积分别为0.969、0.956和0.949,显示出最佳的预测性能。 结论:基于术前MRI的临床特征-影像融合模型能够有效预测突变型高级别星形细胞瘤患者的突变状态,并有潜力通过在治疗前制定更有效的治疗策略来帮助患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8826/10784047/a775866b390b/qims-14-01-251-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8826/10784047/05fb0159f828/qims-14-01-251-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8826/10784047/eefb7953a668/qims-14-01-251-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8826/10784047/2b767b7b242a/qims-14-01-251-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8826/10784047/e6cecd01c186/qims-14-01-251-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8826/10784047/a775866b390b/qims-14-01-251-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8826/10784047/05fb0159f828/qims-14-01-251-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8826/10784047/eefb7953a668/qims-14-01-251-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8826/10784047/2b767b7b242a/qims-14-01-251-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8826/10784047/e6cecd01c186/qims-14-01-251-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8826/10784047/a775866b390b/qims-14-01-251-f5.jpg

相似文献

[1]
A fusion model integrating magnetic resonance imaging radiomics and deep learning features for predicting alpha-thalassemia X-linked intellectual disability mutation status in isocitrate dehydrogenase-mutant high-grade astrocytoma: a multicenter study.

Quant Imaging Med Surg. 2024-1-3

[2]
Multicenter clinical radiomics-integrated model based on [F]FDG PET and multi-modal MRI predict ATRX mutation status in IDH-mutant lower-grade gliomas.

Eur Radiol. 2023-2

[3]
A nomogram strategy for identifying the subclassification of IDH mutation and ATRX expression loss in lower-grade gliomas.

Eur Radiol. 2022-5

[4]
Prediction of Ki-67 labeling index, ATRX mutation, and MGMT promoter methylation status in IDH-mutant astrocytoma by morphological MRI, SWI, DWI, and DSC-PWI.

Eur Radiol. 2023-10

[5]
Preoperative Discrimination of CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytoma: A Deep Learning-Based Radiomics Model Using MRI.

J Magn Reson Imaging. 2024-5

[6]
Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.

Eur Radiol. 2019-12-11

[7]
Radiomics-based prediction of multiple gene alteration incorporating mutual genetic information in glioblastoma and grade 4 astrocytoma, IDH-mutant.

J Neurooncol. 2021-12

[8]
A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery.

Eur Radiol. 2019-4-10

[9]
Deep learning for prediction of isocitrate dehydrogenase mutation in gliomas: a critical approach, systematic review and meta-analysis of the diagnostic test performance using a Bayesian approach.

Quant Imaging Med Surg. 2022-8

[10]
Radiomics risk score may be a potential imaging biomarker for predicting survival in isocitrate dehydrogenase wild-type lower-grade gliomas.

Eur Radiol. 2020-12

引用本文的文献

[1]
Diagnostic Accuracy of Deep Learning Models in Predicting Glioma Molecular Markers: A Systematic Review and Meta-Analysis.

Diagnostics (Basel). 2025-3-21

[2]
Correlation of Edema/Tumor Index With Histopathological Outcomes According to the WHO Classification of Cranial Tumors.

Cureus. 2024-11-3

[3]
Novel Imaging Approaches for Glioma Classification in the Era of the World Health Organization 2021 Update: A Scoping Review.

Cancers (Basel). 2024-5-8

本文引用的文献

[1]
Multicenter clinical radiomics-integrated model based on [F]FDG PET and multi-modal MRI predict ATRX mutation status in IDH-mutant lower-grade gliomas.

Eur Radiol. 2023-2

[2]
Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics.

J Clin Med. 2022-6-15

[3]
Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma.

Neurooncol Adv. 2022-4-22

[4]
ATRX-Deficient High-Grade Glioma Cells Exhibit Increased Sensitivity to RTK and PDGFR Inhibitors.

Cancers (Basel). 2022-3-31

[5]
An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas.

Brain. 2022-4-29

[6]
A nomogram strategy for identifying the subclassification of IDH mutation and ATRX expression loss in lower-grade gliomas.

Eur Radiol. 2022-5

[7]
Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study.

Quant Imaging Med Surg. 2022-2

[8]
Explainable Artificial Intelligence for Human-Machine Interaction in Brain Tumor Localization.

J Pers Med. 2021-11-16

[9]
Reassessing the Role of Brain Tumor Biopsy in the Era of Advanced Surgical, Molecular, and Imaging Techniques-A Single-Center Experience with Long-Term Follow-Up.

J Pers Med. 2021-9-12

[10]
The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.

Neuro Oncol. 2021-8-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索