Suppr超能文献

通过混合建模从PRISMA高光谱数据评估玉米氮素吸收情况。

Assessment of maize nitrogen uptake from PRISMA hyperspectral data through hybrid modelling.

作者信息

Ranghetti Marina, Boschetti Mirco, Ranghetti Luigi, Tagliabue Giulia, Panigada Cinzia, Gianinetto Marco, Verrelst Jochem, Candiani Gabriele

机构信息

Institute for Electromagnetic Sensing of the Environment (IREA), National Research Council of Italy, Milano, Italy.

Remote Sensing of Environmental Dynamics Laboratory, Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano - Bicocca, Milano, Italy.

出版信息

Eur J Remote Sens. 2022 Sep 5;56(1). doi: 10.1080/22797254.2022.2117650. eCollection 2023 Dec 31.

Abstract

The spaceborne imaging spectroscopy mission (PRISMA), launched on 22 March 2019 by the Italian Space Agency, opens new opportunities in many scientific domains, including precision farming and sustainable agriculture. This new Earth Observation (EO) data stream requires new-generation approaches for the estimation of important biophysical crop variables (BVs). In this framework, this study evaluated a hybrid approach, combining the radiative transfer model PROSAIL-PRO and several machine learning (ML) regression algorithms, for the retrieval of canopy chlorophyll content (CCC) and canopy nitrogen content (CNC) from synthetic PRISMA data. PRISMA-like data were simulated from two images acquired by the airborne sensor HyPlant, during a campaign performed in Grosseto (Italy) in 2018. CCC and CNC estimations, assessed from the best performing ML algorithms, were used to define two relations with plant nitrogen uptake (PNU). CNC proved to be slightly more correlated to PNU than CCC ( = 0.82 and = 0.80, respectively). The CNC-PNU model was then applied to actual PRISMA images acquired in 2020. The results showed that the estimated PNU values are within the expected ranges, and the temporal trends are compatible with plant phenology stages.

摘要

2019年3月22日由意大利航天局发射的星载成像光谱任务(PRISMA)在包括精准农业和可持续农业在内的许多科学领域开启了新机遇。这种新的地球观测(EO)数据流需要新一代方法来估算重要的作物生物物理变量(BVs)。在此框架下,本研究评估了一种混合方法,该方法结合了辐射传输模型PROSAIL-PRO和几种机器学习(ML)回归算法,用于从合成的PRISMA数据中反演冠层叶绿素含量(CCC)和冠层氮含量(CNC)。类似PRISMA的数据是根据2018年在意大利格罗塞托进行的一次活动期间机载传感器HyPlant获取的两幅图像模拟得到的。通过性能最佳的ML算法评估得到的CCC和CNC估计值,被用于定义与植物氮素吸收(PNU)的两种关系。结果证明,CNC与PNU的相关性略高于CCC(分别为 = 0.82和 = 0.80)。然后将CNC-PNU模型应用于2020年获取的实际PRISMA图像。结果表明,估计的PNU值在预期范围内,且时间趋势与植物物候阶段相符。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e82a/7615541/f16d625c4469/EMS154470-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验