Hausleiter Jörg, Lachmann Mark, Stolz Lukas, Bedogni Francesco, Rubbio Antonio P, Estévez-Loureiro Rodrigo, Raposeiras-Roubin Sergio, Boekstegers Peter, Karam Nicole, Rudolph Volker
Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistr. 15, Munich D-81377, Germany.
German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
Eur Heart J. 2024 Mar 14;45(11):922-936. doi: 10.1093/eurheartj/ehad871.
Risk stratification for mitral valve transcatheter edge-to-edge repair (M-TEER) is paramount in the decision-making process to appropriately select patients with severe secondary mitral regurgitation (SMR). This study sought to develop and validate an artificial intelligence-derived risk score (EuroSMR score) to predict 1-year outcomes (survival or survival + clinical improvement) in patients with SMR undergoing M-TEER.
An artificial intelligence-derived risk score was developed from the EuroSMR cohort (4172 and 428 patients treated with M-TEER in the derivation and validation cohorts, respectively). The EuroSMR score was validated and compared with established risk models.
The EuroSMR risk score, which is based on 18 clinical, echocardiographic, laboratory, and medication parameters, allowed for an improved discrimination of surviving and non-surviving patients (hazard ratio 4.3, 95% confidence interval 3.7-5.0; P < .001), and outperformed established risk scores in the validation cohort. Prediction for 1-year mortality (area under the curve: 0.789, 95% confidence interval 0.737-0.842) ranged from <5% to >70%, including the identification of an extreme-risk population (2.6% of the entire cohort), which had a very high probability for not surviving beyond 1 year (hazard ratio 6.5, 95% confidence interval 3.0-14; P < .001). The top 5% of patients with the highest EuroSMR risk scores showed event rates of 72.7% for mortality and 83.2% for mortality or lack of clinical improvement at 1-year follow-up.
The EuroSMR risk score may allow for improved prognostication in heart failure patients with severe SMR, who are considered for a M-TEER procedure. The score is expected to facilitate the shared decision-making process with heart team members and patients.
对于二尖瓣经导管缘对缘修复术(M-TEER),风险分层在恰当选择重度继发性二尖瓣反流(SMR)患者的决策过程中至关重要。本研究旨在开发并验证一种人工智能衍生的风险评分(EuroSMR评分),以预测接受M-TEER的SMR患者的1年结局(生存或生存+临床改善)。
从EuroSMR队列(分别在推导队列和验证队列中有4172例和428例接受M-TEER治疗的患者)中开发出一种人工智能衍生的风险评分。对EuroSMR评分进行验证,并与已建立的风险模型进行比较。
基于18项临床、超声心动图、实验室和用药参数的EuroSMR风险评分,能够更好地区分存活和未存活患者(风险比4.3,95%置信区间3.7-5.0;P<.001),并且在验证队列中优于已建立的风险评分。1年死亡率的预测(曲线下面积:0.789,95%置信区间0.737-0.842)范围从<5%到>70%,包括识别出一个极高风险人群(占整个队列的2.6%),该人群1年内存活概率极低(风险比6.5,95%置信区间3.0-14;P<.001)。EuroSMR风险评分最高的前5%患者在1年随访时的死亡率为72.7%,死亡或无临床改善率为83.2%。
EuroSMR风险评分可能有助于改善考虑接受M-TEER手术的重度SMR心力衰竭患者的预后。该评分有望促进与心脏团队成员和患者的共同决策过程。