MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Headley Way , Oxford OX3 9DS , United Kingdom.
Department of Mechanical Engineering , University College London , London WC1E 7JE , United Kingdom.
Nano Lett. 2019 Jul 10;19(7):4427-4434. doi: 10.1021/acs.nanolett.9b01196. Epub 2019 Jun 20.
Quantification of mechanical forces is a major challenge across biomedical sciences. Yet such measurements are essential to understanding the role of biomechanics in cell regulation and function. Traction force microscopy remains the most broadly applied force probing technology but typically restricts itself to single-plane two-dimensional quantifications with limited spatiotemporal resolution. Here, we introduce an enhanced force measurement technique combining 3D super-resolution fluorescence structural illumination microscopy and traction force microscopy (3D-SIM-TFM) offering increased spatiotemporal resolution, opening-up unprecedented insights into physiological three-dimensional force production in living cells.
量化机械力是生物医学科学面临的一大挑战。然而,这些测量对于理解生物力学在细胞调节和功能中的作用至关重要。牵引力显微镜仍然是应用最广泛的力探测技术,但通常仅限于具有有限时空分辨率的单平面二维量化。在这里,我们引入了一种增强的力测量技术,将 3D 超分辨率荧光结构照明显微镜和牵引力显微镜(3D-SIM-TFM)相结合,提供了更高的时空分辨率,为深入了解活细胞中生理三维力的产生提供了前所未有的视角。