Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
Max Planck Institute for the Science of Light, and Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
Trends Biotechnol. 2021 Dec;39(12):1249-1262. doi: 10.1016/j.tibtech.2021.03.006. Epub 2021 Apr 21.
The biophysical properties of cells reflect their identities, underpin their homeostatic state in health, and define the pathogenesis of disease. Recent leapfrogging advances in biophysical cytometry now give access to this information, which is obscured in molecular assays, with a discriminative power that was once inconceivable. However, biophysical cytometry should go 'deeper' in terms of exploiting the information-rich cellular biophysical content, generating a molecular knowledge base of cellular biophysical properties, and standardizing the protocols for wider dissemination. Overcoming these barriers, which requires concurrent innovations in microfluidics, optical imaging, and computer vision, could unleash the enormous potential of biophysical cytometry not only for gaining a new mechanistic understanding of biological systems but also for identifying new cost-effective biomarkers of disease.
细胞的生物物理特性反映了它们的身份,是其在健康状态下维持体内平衡的基础,并决定了疾病的发病机制。最近,生物物理细胞检测技术的飞跃式发展使我们能够获得这些信息,而这些信息在分子检测中是被掩盖的,其具有的区分能力是以前难以想象的。然而,生物物理细胞检测应该在利用丰富的细胞生物物理内容方面“更进一步”,生成细胞生物物理特性的分子知识库,并为更广泛的传播标准化协议。克服这些障碍需要微流控、光学成像和计算机视觉的同步创新,这可能会释放生物物理细胞检测的巨大潜力,不仅可以帮助我们对生物系统有新的机械理解,还可以识别新的具有成本效益的疾病生物标志物。